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1 Foreword

The ultirnate objective of this work is to design planning and control archi­
tectures that enable autonomous vehicles to operate in open terrain with­
out sacrificing speed and rnaneuverability. To this end, we develop mobility
rnetrics for UGVs operating off-road at high-speed regimes, explore optimal
algorithms to derive optimal paths for uevs, and propose a framework for
rnotion planning. The major tasks to accomplish this goal are the following:

• Devdop an efficient stochastic terrain traversal prediction tool that
allows svstematic assessment of the ahilitv of a vehicle to negotiate

v ... ' <..:>

challenging terrain. This tool will improve the computational efficiency
of current Monte Carlo-based methods and allow for the construction
of a large library of obstacle traversal maneuvers.

• Design vehicle rnobility metrics that quantify the ability of a vehicle
to traverse challenging terrain and to track trajectories with varying
curvature and speed. These metrics will be unique since they will: a)
represent a UGVs obstacle traversal capability as a function of its tra­
jectory (i.e., path and velocity), and b) consider UGV agility (i.e.) the
ability to track high-curvature paths, and execute challenging maneu­
vers) .

• Develop methods for evaluation of terrain/control strategy pairs that
provide a compact yet accurate vvay to identify, classify, and assess
terrain-specific maneuvers. This task will bridge the gap between ac­
curate but complex metrics, and tractable metrics that can be used in
real-time path planning.

• Develop a symbolic control framework that permits the execution of
complex 1 high-performance trajectories through the on-line combina­
tion of a number of baseline controllers, chosen [rorn a finite library of
elementary behaviors or maneuvers.
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3 Problem Statement

In this project, we consider the problem of autonomous driving of land vehi­
cles in open terrain at high speeds. Achieving autonomous operation of these
vehicles in open terrain remains a a challenging problem not only due to un­
certainty of the operating environment but also due to the limited knowledge
of the vehicle's mobility in such type of terrain. Moreover, autonomous driv­
ing of wheeled vehicles at high speeds adds a new level of complexity due to
the time constraints imposed by the small reaction times and the nonlinear
characteristics of the vehicle's operation. A typical scenario for autonomous
driving in open terrain is depicted in Figure 1, where an Unmanned Ground
Vehicle (UGV) deploys across a rocky, sloped, and vegetation-covered envi­
ronment.

Figure 1: Autonomous driving of an Unmanned Ground Vehicle (UGV)
across an open terrain with rocks, slopes, and vegetation.

High-speed autonomous navigation in rough terrain, like the scenario in
Figure 1, is challenging because navigation algorithms must consider nonlin­
ear vehicle dynamic effects such as wheel slip, skidding, ballistic behavior,
rollover, and vehicle-terrain interaction phenomena. Navigation algorithms
must also consider the presence of obstacles. Additionally, these algorithms
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must be computationally efficient enough to operate in real time. Further
difficulties arise due to real-world uncertainties caused by unknmvn/time­
varying vehicle parameters, unknown/poorly known terrain conditions, and
range sensor error and uncertainty. The reason for the poor understand­
ing of mobility in open terrain, that is 1 its ability to traverse rugged terrain
efficiently and safely, is rooted in the intrinsic complexity of the vehicle's
dynamics and in the vehicle/terrain interaction. These properties are hard
to quantify with a single scalar metric involving vehicle and terrain features.
Generally speaking, a solution to the rnotion planning problem for high-speed
autonomous vehicles in a highly unstructured and uncertain environrnent re­
quires not only sophisticated vehicle design and hardware components (e.g.,
for actuation, sensing, and communication), but rnost importantly, it de­
rnands advanced software algorithms and supervisory control strategies that
can rnake use of the full capabilities of these cornponents.

The ultimate objective of this work is to design planning and control ar­
chitectures that enable autonomous vehicles to operate in open terrain yvith­
out sacrificing speed and maneuverability. To this end, we develop mobility
metrics for UGVs operating off-road at high-speed regimes 1 explore optimal
algorithms to derive optimal paths for UGVs, and propose a framework for
motion planning. The major tasks to accomplish this goal are the following:

• Develop an efficient stochastic terrain traversal prediction tool that
allows systematic assessment of the ability of a vehicle to negotiate
challenging terrain. This tool will improve the computational efficiency
of current l\;Ionte Carlo-based methods and alloyv for the construction
of a large library of obstacle traversal rnaneuvers.

• Design vehicle mobility metrics that quantify the ability of a vehicle
to traverse challenging terrain and to track trajectories with varying
curvature and speed. These meLr will be unique since they will: a)
represent a UG Vs 0 traversal capability as a function of its tra­
jectory (i.e., path and velocity), and b) consider UG V agility (Le., the
ability to track high-curvature paths, and execute challenging maneu-
,mI'Q)
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• Develop methods for evaluation of terrain/control strategy pairs that
provide a compact yet accurate way to identify, classify, and assess

4



terrain-specific maneuvers. This task "yill bridge the gap between ac­
curate but complex metrics, and tractable metrics that can be used in
real-time path planning.

• Develop a symbolic control framework that permits the execution of
complex, high-performance trajectories through the on-line combina­
tion of a number of baseline controllers, chosen from a finite library of
elementary behaviors or maneuvers.

The results obtained from a research period of one year are summarized in the
next section. A detailed presentation of these results as well as a thorough
description of the methodologies employed to derive them can be found in
Appendix A-B.
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4 Sunlnlary of Results

4.1 Efficient stochastic terrain traversal.

\Ve have developed a computationally efficient method for mobile robot mo­
bility prediction. Such a method "vould be useful in analysis of high speed
motion 1 especially in uneven, natural terrain. It would also find applica­
tion in both motion planning and control algorithms designed for high speed
scenanos.

Our approach to mobility prediction is based on the stochastic response
surface method (SRSIVI). rrhe SRSM is a method for efficient representation
of the response of systems that are subject to uncertainty. In this approach,
we represent model inputs as functions of non:nal random variables, with each
having zero mean and unit variance. The same set of randorn variables is
then used to represent a user-specified output. .An equivalent reduced model
for the output is expressed in the form of a series expansion, consisting of
rnulti-dimenslonal Hen:nite polynomials of normal randorn variahles, as:

n n i1

y = oo·t· I:= ail I\(~iJ .+ I:= I:= ai;i2r2(~il' ~i,J .+ ...
il =1 i1 =1 i2=1

wherey refers to an output metric 1 ail' ; ... are coefficients to be deter­
mined, ~il' , ... are Ll.d. normal random variables, and rq(~i11 , ... 1 )

is the Hermite polynomial of degree q.

rrhe unknown coefficients are then estimated from a srnall number of
rnodel simulations, by choosing a set of sample points (i.e. collocation points),
calculating the rnodel output at these points, then applying regression to find
the coefficients. rI'he approximate reduced model was then used to analyze
the system subject to uncertainty. It has been shown that this approach
yields results that are comparable in accuracy to the outputs of classical
Monte Carlo approaches.

The SRSM approach can be applied to a variety of applications such
as those related to mobility prediction (including obstacle traversal, slope
traversal, and rollover analysis) and motion planning (I.e. terrain dependent
path generation) while explicitly considering uncertainty in terrain and/or
vehicle parameters. The form of the uncertainty distribution can be specified,
and can be state or position dependent.

For mobility analysis of a vehiele traversing sloped, deformable terrain, a
simple description of mobility was defined as the probability that for a given
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ini ial v 10 ity at an initial po ition h robo will hav a non-n gative ve­
loci y after moving up the incline. Taking into account uncertainty in errain
param ter thi was presented as dis l'ibution l' trav I' al pI' b ili y ver­
su initial v 10citYl whi h could then be used to predict for which velo i ies
the robot will b able 0 ravers th deformable errain region with a reason­
ably high probabili y. A classical Bekker- ype wheel soil in era ion model
was used to cal ula e th drawbar pull (i.e. net longi udinal wheel thrus ).
An equivalent model for the lrawbar pull wa hen formul d u ing he

R8NI approa h which wa th n 1 d to cal ulat h raver al probabiliti .
he approach was also u d for mobili y analy is of a vehicle traveling

along a side slope. A probabilistic reachability metri was generated based on
he. ta istic of h (patial) di tribu ion f raj tori s re ulting from a given

open loop input over variou distinct rrain types and the mean trajectory
wa plott d along with the prob bility ellipsoids' he I tel' repre nting h
devia ion from the mean path under uncer ainty. Thi is shown in Figure 2.

:§: 0.8
,: 0.6
,g 0.4
'i;; 02
8. '0
N

X posilioin [mj
14 Y positioin [m]

Figur 2: fobili y analy i 'Rea hability M tri ' for v hi I traveling along
a side- lope.

h SRSII me hod was also applied to rollover analysis of a Dubins ve­
hicle for various teering high. peed maneuvers. The rollover tenden y was
analyzed while considering un ertainty in the vehicle roll stiffness parame-
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tel's. The linear model considered included lateral acceleration, yaw and roll
dynamics. It ,vas shown that, as expected, explicit consideration of uncer­
tainty yielded a richer description of the rollover probability as compared to

a deterministic model-based approach.
Finally, initial investigation into integrating the SRSM approach with a

motion planning method was performed. The motion planning method was
based on rapidly exploring random trees (RRTs). Here, the SRSM method
was used to calculate mobility-related statistics for each branch of the rnotion
plan tree for a high speed vehicle motion. rrhe resulting motion plan therefore
implicitly considered uncertainty in its determination of an safe, rapid path
across uneven terrain.

Our rnajor results are as follows:

• A method for mobile robot mobility prediction based on the stochastic
response surface method was devdoped.Results obtained using
SRSM matched closely with those obtained through the use of
Monte Carlo methods. The following advantages were observed:

Cornputational tirne for the SRSIVI was found to be approximately
two orders of rnagnitude lower than that of classical Monte Carlo
methods.

rrhe SRSM approach allows for the explicit consideration of un­
certainty (in vehicle and/or t.errain models) during aggressive ma­
neuvermg.

rrhe approach represents a potential pathway towards robust ag­
gressive control framework .

• The SRSIVI method was applied to several practical application sce­
narios, including mobility prediction on sloped terrain, and high speed
motion planning. Major results included:

Simulation results of an analysis of vehicle mobility on a side

Initial results for a motion planning method that explicitly con­
siders model uncertainty.

Appendix B contains a conference paper t.hat 1S a direct result of this
research.
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4.2 Optimal motion planning on heterogeneous ter­
raIn.

We consider the problem of computing optimal paths for UGVs from a given
configuration to a final configuration. For simplicity, we assumed that the
environment is obstacle-free and a simple kinematic model of the car depicted
in Figure 3, which is given by the equations

x v cos e,
y v sin e,
e u,

(1)

where (x,y,e) E SE(2), (x,y) is the vehicle's position, e is the angle between
the vehicle and the vertical axis determining the vehicle's orientation, v is the
forward, positive velocity and u is the bounded angular acceleration input,
which, without loss of generality, is assumed to take value in [-1,1]. This
vehicle model is usually referred to as Dubins vehicle and has been broadly
used as a kinematic model for path planning of UGVs (and UAVs), like the
one depicted in Figure 3.

Figure 3: Dubins car.

For a UGV given by (1) on an open terrain, our goal is to compute
the optimal path starting at a given initial configuration and ending at a
given final configuration. The parameters in the model (1) vary for terrains
with different properties. The maximum forward speed changes with the
terrain roughness while the maximum curvature of the paths depends on
the friction coefficient of the terrain. A convenient modeling abstraction for
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navigation on heterogeneous open terrain is to classify terrain regions based
on these parameters and then associate to each region a vehicle model with
appropriate maximum forward velocity and friction coefficient. For clarity
in the exposition, we only consider the case of heterogeneous velocity along
the terrain where the vehicle is deployed. Two different velocities, Vl and V2,

define the constant, forward velocity of Dubins vehicle on two patches of the
plane, patch P1 and patch P2 , depicted in Figure 4. We are interested in
solving the following problem:

Find the minimum-time path for Dubins vehicle from an initial
configuration in patch P1 to a final configuration in patch P 2 .

Figure 4 shows possible initial and final vehicle configurations, which are
denoted by (xO,yO,BO) and (x\y\B1), respectively, for which a minimum­
time path is to be found. To the best of our knowledge, the problem described
above has not been addressed in the past, perhaps due to the fact that the
classical Pontryagin's Maximum Principle is not applicable because of the
discontinuous behavior at the common boundary between the patches.

----------y ~ 0

:81

(Xl,yl,81~

Figure 4: Dubins vehicle on an heterogeneous terrain. The initial configu­
ration is given by (xO,yO,BO) and the final configuration by (x\y\B1). The
forward velocity in patch P1 is smaller than the forward velocity in patch P2 .

We have established conditions for time-optimal maneuvers of autonomous
vehicles operating on terrain with variable characteristics. Our results include
conditions that the paths need to satisfy at the boundary between terrains
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with different maximum velocity. These conditions reduce notably the com­
putational load in selecting maneuvers and enable the generation of optimal
motion planning algorithms. \Ve summarize them as follmvs:

• The portions of the paths that remain in either region are Dubins op­
timal

• OptirnaJ paths are such that) at
their type does not change.

boundary between the

• Optimal paths that cross the boundary describing a straight line are
orthogonal t.o t.he boundary.

• The angles of the path pieces yvithin each region before and after cross­
ing the boundary satisfy a refraction law.

Appendix B contains formal statements of these results.

4.8 Robust control algorithnls for lnotion prilnitive se­
lection.

Given a mathematical model of a vehicle, or in more genera.l terms, a dy­
namical system, yvith state x and input u .g. a static input/output map,
an ordinary differential equation with inputs, a partial differential equation
with inputs, etc.) describing its behavior for each given input, the motion
planning problern for is that of given a motion plan Vi find a control input
'/1. such that the state :1; satisfies the specification given by the motion plan
v. to T. rrhis specification is usually given in terms of a a curve in the state
space parameterized by time t, in which case the goal of a motion planning
algorithm is to steer :z: to that curve. Algorithms that accomplish such a
task are commonly applied in robotics as a method to solve steering prob­
lems. One challenge for algorithms is that in real-world settings, they
rnusL accomplish t.he motion planning t.ask in the presence of mea­
surement error) exogenous disturbances, and unmodeled dynamics. Hence,
reactivity and robustness are highly desired properties for these algorithms.

A particular class of motion planning algorithms, which are known as
maneuver-based motion planning alg01ithms, exploits the symmetry proper­
ties present in certain classes of nonlinear systems, in particular, UGVs, to
perform challenging motions . Motion primitives available in a pre-defined li­
brary, designed off-line with model-based design tools, trial and error , and/or
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obtained from motions generated by humans, are concatenated to perform
a given motion plan. For example, an uev can be controlled to perform
motions, like the one in Figure 5, by breaking the motion in "pieces" where
inputs are constants, referred to as trim trajectories, and where the inputs are
varying with certain law, referred to as maneuvers. Figure 5 denotes the dif­
ferent pieces. Typically in maneuver-based motion planners, trim trajectories
and maneuvers are executed by applying appropriate open-loop control laws.
A method to synchronize the control decisions is to implement a switching
logic in a maneuver automaton.

trim
.....

Figure 5: Motion plan for an uev divided into trim and maneuver pieces.

The open-loop nature of the maneuver-based motion planning method
outline above limits its application to nominal scenarios, that is, those with­
out perturbations, e.g. measurement noise, unmodeled dynamics, etc., which,
in turn, narrows its applicability to steering of vehicles across open terrain.
Even for smooth feedback systems, the presence of arbitrarily small pertur­
bations can lead to totally different behavior than in the nominal case. In
fact, establishing robustness (vaguely, the property that under arbitrarily
small perturbations the system solutions are "close" to the nominal ones)
is not a straightforward task, even in scenarios with homogeneous terrain.
Moreover, the metric used to characterize closeness between solutions trajec­
tories (for example, the distance between a trim reference trajectory and a
uev trajectory) should take into account that corresponding pieces in the
nominal and perturbed motions may occur over different time intervals.

Another challenge in robustifying maneuver-based motion planning is
that the nominal trajectories resulting from it are not always necessarily
smooth. Hence, standard trajectory tracking control design techniques are

12



not applicable. Even "vhen these standard tools are applicable, tracking de­
sign for aggressive maneuvers is not always an easy task (for example, to

design a tracking controller for an UGV to track motion plans having tight
turn maneuvers would require a control law that guarantees fast tracking at
the turns while at other pieces of the reference trajectorY1 slower tracking
wo uld suffice).

To address some of the issues mentioned above 1 we propose a hybrid
control framework for robust maneuver-based motion planning. rrhe major
results are as follows:

• Trim trajectories and maneuvers can be combined in a hybrid controller
to crecnte maneuver-based motion plans by mean8 of a timrT, tv;o logic
variable8, and one aw;;iliary date.

• The graphical di8tance between traJectorie8 specified by the motion plan­
ner and the trajectories to the closed-loop (hybrid) system is an appro­
priate metric to evaluate closenes8 between motions.

• Robwrtnr'ss of tracking r~l manr'uver-based motion planning for general
nonlinear sY8tems v;dh symmetries to Jx'rtnrbations in the indial con­
dition8, eJ:trTruJI distnrbances, and unmodeled dynamic8.

\Ve show that this framework results in a hybrid system with implementable
t ' 1 t f' I . t I i rl"l I'· 't'Semarl."lCS, ane Ilence, use u experlIlI.erl."a se ;ups, . 1e resu tmg transr-lOn

system and control methodology is such that, given a seq!wnce of commands,
selects and executes a particular maneuver from a library of motion prirni­
tives. The main feature of the system is its robustness to external perturba­
tions, which are typical in controlling UGVs in challenging terrain and, unless
the associated control algorithm is robust, concatenation of motion primitives
would not be successful. More details can be found in Appendix C.

Regarding the generation of motion primitives1 which is key in the con­
struction of a library of trim trajectories and maneuvers for the purposes of
motion planning1"ve provide a detailed calculation of trim trajectories for a
particular UGV model: the half car. vVe show that its set oftrim trajectories
includes trajectories at the limit of the vehicle's performance, like those as­
sociated to vehicle motions under slipping and skidding conditions occurring
at large velocity and small turning radius, which are typica.l in open terrain
settings_ See Appendix D for rnore details.
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Mobility Prediction for Unmanned Ground Vehicles
In Uncertain Environments

Gaurav Kewlani, Karl Iagnemma
Robotic Mobility Group, Massachusetts Institute of Technology, Cambridge, MA, USA

ABSTRACT

The ability of autonomous wnnanned ground vehicles (UGVs) to rapidly and effectively predict terrain negotiability is a
critical requirement for their use on challenging terrain. Most methods for assessing traversability, however, asswne
precise knowledge of vehicle and terrain properties. In practical applications, uncertainties are associated with the
estimation of the vehicle/terrain parameters, and these llllcertainties must be considered while determining vehicular
mobility. Here a computationally inexpensive method for efficient mobility prediction based on the stochastic response
surface (SRSM) approach is presented that considers imprecise knowledge of terrain and vehicle parameters while
analyzing various metrics associated with UGV mobility. A conventional Monte Carlo method and the proposed
response surface methodology have been applied to two simulated cases of mobility analysis, and it has been shown that
the SRSM method is an efficient tool as compared to conventional Monte Carlo methods for the analysis of vehicular
mobility in uncertain environments.

Keywords: Homogeneous Chaos, Monte Carlo, Latin Hypercube Sampling, Vehicle Mobility, Vehicle Rollover,
Stochastic Response Surface, Terrain Modeling, Unmanned Ground Vehicle, "Wheel-Soil Interaction

1. INTRODUCTION

Future Anny operations will employ autonomous or semi-autonomous unmanned ground vehicles (UGVs) in both cross­
country and urban environments. A fimdamental requirement of these vehicles is to quickly predict their ability to
negotiate rough terrain regions and surmount obstacles. This mobility prediction capability is critical to the successful
deployment of UGVs that can operate effectively on challenging terrain with minimal hwnan supervision.

Significant work has been done to understand and predict the mobility of vehicles in natural terrain [1], [2]. However,
these efforts asswne accurate knowledge of vehicle parameters and wheel- (or track-) soil interaction properties,
gathered from terrain measurement devices such as cone penetrometers. In field conditions, however, UGVs often only
have access to sparse and uncertain parameter estimates drawn from "standard" robotic sensors such as LIDAR.
Moreover, significant uncertainties are often associated with estimates of vehicle parameters, due to effects such as
loading, wear, fuel conswnption, etc. It is thus critical to consider these uncertainties when deriving predictions of
vehicle mobility.

There exists a vast body of literature on techniques to estimate the probability distributions of processes that are subject
to uncertainty. Such techniques could be applied to the mobility prediction problem, by first modeling the uncertainty in
vehicle and terrain parameters, then defining a range for their probable values, and finally analyzing the performance of
a UGV model over that parameter space, as in [3]. The result would be a prediction of the ability of a UGV to
successfully traverse a given route that rigorously considers vehicle and terrain parameter uncertainty. This analysis can
be performed using a variety of techniques such as interval mathematics, probabilistic methods and fuzzy set theory,
among others [4], [5].

A traditional method for estimating the probability density fimction of a system's output response from known or
estimated input distributions is the Monte Carlo method [6], [7]. This approach involves the random selection of a value
for each uncertain parameter from its uncertainty range, weighted by its probability of occwrence, followed by model
simulation using this parameter set. This process is repeated many times to obtain the probability distribution of an
output metric.

*{gkew1ani, kdi}@mit.edu; Phone 617 253-2334; Fax 617 258-7881; http://web.mit.edulmobilitv



Since parameter values are selected randomly, a large number of simulation runs is often required to obtain reasonable
results, leading to a (usually) high computational cost. Structured sampling techniques such as Latin hypercube sampling,
importance sampling, and others can be used to improve computational efficiency, however these gains may be modest
for complex problems [8], [9].

More recent approaches to stochastic simulation include the polynomial chaos approach, which is based on Wiener's
theory of homogeneous chaos. Since the introduction of the spectral stochastic finite element method [10], polynomial
chaos has been successfully applied to represent Wlcertainty in various structural and fluid mechanics problems.
Recently, researchers have applied this technique to the dynamic simulation of a 7 DOF vehicle [11]. However, the
collocation approach employed therein has been noted to be inherently unstable and exhibit convergence problems [12].
Moreover, different combinations of collocation points may lead to considerably different output estimates, or they may
not cOITespond to high probability regions of the input panuneter space.

Here we propose the use of the stochastic response smface method (SRSM), as described by Isukapalli [13], [14] for the
mobility prediction of UGVs in natmal terrain that uses a regression based approach to obtain an equivalent reduced
model for the output and serves as a computationally inexpensive tool for predicting the traversability of a UGV over
rugged terrain.

This paper is organized as follo\'/'S. In Section 2, we briefly introduce tlle Monte Carlo and SRSM meiliods and present
their application to vehicle dynamic modeling. This is followed by a description of a three degree of freedom vehicle
model in Section 3. The effect of terrain physical parameter tillcertainty on vehicle mobility is analyzed. Simulation
results obtained using Monte Carlo and SRSM approaches are compared in Section 4. It can be seen that accmate,
efficient statistical mobility prediction can be achieved using the proposed response smface techniques.

2. UNCERTAINTY ANALYSIS TECHNIQUES

2.1 Monte Carlo Method

With the advancements in computational teclmology, Monte Carlo techniques have fowKl increasing application in
numerous fields over ilie last several years. These metllOds typically involve a (usually) large number of simulation runs
of an analytical or numerical system model using various combinations of model parameters, followed by the subsequent
analysis oftlle outputs. In other words, the model parameters (knovm as "input parameters") are randomly sampled from
their respective probability distributions, which are assumed to be known (or estimated) a priori, and multiple simulation
nms are conducted using each set of the input parameter values to obtain tlle corresponding outputs for each case. En
estinmte of the probability distribution of a user-defined output metric can tllen be estimated.

A variety of metllOds have been developed for efficient sampling from input parameter probability distributions,
including (among others) stratified, importance and Latin Hypercube sampling [15], [16]. Generally, these methods
focus on ensming that samples are generated from the entire range of the input parameter space while reducing
computational costs, and are thus an improvement over the standard Monte Carlo meiliod.

In tlle mobility prediction scenario, vehicle and terrain parameters are designated as uncertain input parameters. A
fWKlamental asswnption of the proposed approach is tlmt while the terrain and/or vehicle parameters may not be
precisely known, engineering estimates of ilieir distributions are available. This is a reasonable assumption for UGV
physical parameter estimates, since ilie effects of loading, component wear, and parameter uncertainty can generally be
bounded wiili reasonable accmacy. It is also a reasonable assumption for terrain parameter estimates, since many
meiliods exist for coarsely classifying terrain from standard robotic sensors such as LIDAR and vision [17]-[19].

2.1.1 Algorithmic implementation

Here we discuss the general Monte Carlo approach as applied to mobility analysis. The meiliod considers functions of
the form:

Y = g(X) (1)

where g represents the model under consideration, X is a vector of uncertain input variables and Y represents a vector of
estimated outputs.



A general procedure for the analysis is as follows:

a) Construct a vector X consisting of n relevant terrain and/or vehicle parameters. To define the input parameter
space and to characterize the llllcertainty in the elements of X, assign a probability distribution to each input
parameter, based on corresponding engineering estimates.

While many forms of the input parameter distribution are possible, in this paper, the parameter values are assumed
to have a Gaussian distribution and to be llllcorrelated.

b) Generate a sample value for each of the n input variables from the corresponding probability distribution. More
specifically, a sample set:

is generated from the input parameter space. This set may be generated randomly or using the structured sampling
techniques such as stratified sampling, importance sampling or Latin Hypercube sampling.

In the "standard" Monte Carlo approach, random sampling of the input parameter distributions is performed.
However, to ensure representation of the entire parameter range, a large number of simulations must often be
performed. Stratified sampling, on the other hand, partitions the sample space into a number of strata, with each
stratum having a specified probability of occurrence. Random samples are then drawn from each stratum. While this
ensures dense coverage of the parameter space, the definition of the strata and the calculation of their probabilities
must be carefully addressed. Latin hypercube sampling can ensure dense coverage of the range of each input
variable while avoiding the difficulties associated with stratified sampling. This is achieved by dividing each input
parameter's range into disjoint intervals of equal probability and then randomly sampling a parameter value from
each interval. This is illustrated in Figure 1.
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Fig. 1. Illustration of sampling using the Latin hypercube method.

c) Evaluate the output response from the system modelllllder analysis using the values from the input parameter set
X j as model parameter values.

d) Repeat steps b) and c) to generate a probability distribution for the output metric. Various statistics such as the
estimated expectation, j..l, or variance, rl, can then be determined as follows:

1 N

fl = - Lg(X;)
N )_1

(4)

The number of simulations (N) is chosen to be large enough such that the output distribution converges to a stable value.



Figur 2 below represents schematically th general Monte Carlo approach for uncertainty analysis:

I\A
r /~

Fig. 2. Illustration oftmccrtainlY analysis using the Monte Carlo method.

2.2 Stochastic Response Surface Method

The stochastic response surface method (SRSM) represents inputs and outputs of a system under consideration via series
approximations using standard random variables, which results in a computationally efficient means for uncertainty
propagation through the models. In SRSM, inputs are represented as functions of normal random variables, each having
zero mean and unit variance. The same set of random variables that is used to represent input stochasticity can then be
used for representation of outputs.

An equivalent reduced model for an output is expressed in the fonn of a series expansion consisting of multi­
dimensional Hermite polynomials of normal random variables, as:

y=ao+f;a,.rJ~~)+! ta'll,r2(~i'~I)+'" (5)
~~l i~1 1,_1

where y refers to an output metric, ail, a'2, ... are coefficients to be determined, (i/. (i2, ... are i.i.d. nonnal random
variables, and rq(~1 ~2,"" ~q) is the Hennite polynomial of degree q, given as:

1."1' I T
rq(~\,~", ...,~;)=(-I)qe2~<; fJ1 .e-~<; (6)

a~~ .....a~,.
For notational simplicity, the series may be written as:

N

y(I,!;) =Ly/t)<D/!;)
j=O

(7)

where the series is truncated to a finite number of terms and there exists a correspondence between [q(¢"iJ, ¢"i2' ... , ¢"iq) and
<D(~), and their corresponding coefficients.

The series expansion contains unknown coefficient valucs that can bc cstimated from a limited numbcr of modcl
simulations to generate an approximate reduced model. This is achieved by choosing a set of sample points from high
probability regions then calculating the model output at these points [13], [20] A regression based approach is then
utilized to obtain values for the lmknown coefficients [14]. Once the (statistically equivalent) reduced model IS

formulated, it can be used to facilitate analysis of the system subject to uncertainty.

This procedure thus results in a reduction in the number of model simulations (and, therefore, a reduction in
computational cost) required for estimation of output uncertainty, as compared to the conventional probabilistic methods
such as Monte Carlo methods. Further details on SRSM can be found in [14].

2.2.1 Algorithmic implementation

Here a summary of the SRSM method is presented as applied to robotic mobility prediction.



(8)

a) Represent Wlcertain input parameters in terms of standard random variables (here Gaussian variables). A
terrain/vehicle parameterA"j can be written as:

X J = ,UJ + G J ';

where h is the mean., O"J represents the standard deviation and ;; is a standard normal random variable.

b) Express the model output under consideration in terms of the same set of random variables. While for Gaussian
variables, Hermite polynomials are used, different orthogonal polynomial basis fWlctions are used corresponding to
the probability distributions of other non-Gaussian variables. This is shown in Table 1.

Table 1. Polynomial Basis Fllilctions and Corresponding Random Variables

RANDOM POLYNOMIAL

VARIABLE fuNCTION

Gaussian Hermite
Gamma Laguerre

Beta Jacobi
Uniform Legendre

c) Estimate the unknown coefficients of the approximating series expansion. This is accomplished via a regression
based approach, first by computing the model output at a set of collocation points [13], [20]. These points are
selected such that each standard random variable takes a value of either zero or a root of the Hermite polynomial of
a higher order. This ensures that points from high probability regions are represented. Taking the number of
collocation points (M) to be nearly twice in number to the number of coefficients (N+1) has been shown to yield
robust coefficient estimates [14], [20]. Calculation of the model output at these points results in set of equations with
the number of equations exceeding the number of unknown coefficients. Using the linear least square method and
singular value decomposition, the system of linear equations similar to the one shown below can be solved:

[, (40 )

[, (4,)

Yo (t)

y, (t) (9)

The reduced equivalent model can henceforth be used for the analysis, which avoids the requirement of multiple fWlS of
the (generally) non-linear model, thus resulting in reduced simulation time. The advantage of the SRSM technique is
therefore that the number of model simulations is greatly reduced relative to conventional methods, thus improving
computational efficiency. Further, the accuracy of the computational model can often be increased by increasing the
order of the polynomial chaos expansion.

3. 3. MOBILITY PREDICTION SCENARIO

3.1 Traversal over Uncertain Terrain
Here an analysis of a simplified mobile robot terrain traversal scenario is presented using the SRSM technique, which
considers a mobile robot traveling on flat outdoor terrain (here modeled as heavy clay) and then attempting to navigate
up an inclined region of highly deformable terrain (here modeled as dry sand). This is illustrated in Figure 3. It is
assumed that significant Wlcertainty is associated with a small number of critical terrain physical parameters (here,
cohesion and internal friction angle). The UGV's mobility is analyzed using a baseline "standard" Monte Carlo approach
(SMC), a Latin hypercube Monte Carlo approach (LHSMC) and the stochastic response surface technique.

A simple description of mobility in the proposed scenario is defined as the probability that for a given initial velocity
(uo) at the initial position (A) (see Figure 3), the robot will have a non-negative velocity at point (B), after moving up the
sandy incline. Taking into account the Wlcertainty in terrain parameters, this can be presented as a distribution of
traversal probability versus initial velocity, which can then be used to predict for which velocities the robot will be able
to traverse the deformable terrain region with a reasonably high probability.
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d,

Fig. 3. Simplified scenario considered for mobility prediction wIder wlcertainty

A classical Bekker-type wheel soil interaction model is used to calculate the drawbar pull (i.e. net longitudinal wheel
thrust) for the above analysis [21], [22]. This model assumes quasi-static motion, and that the robot wheel is rigid
relative to the terrain. An equivalent model for the drawbar pull is then formulated using the approach, which is later
used to calculate the traversal probabilities.

Fig. 4. Wheel-terrain interaction mooel for rigid wheel on deformable terrain.

For the vehicle terrain interaction model shown in FiglU'e 4, the drawbar pull is given by:

DP = rb[l «e) cos ede -1 ,,(e)~n ede]

where r(8) and a(B) represent, respectively, the shear stress and normal stress at the wheel-terrain interface (divided into
two regions in Figure 4 to more clearly represent the stress distribution), and are given by:

", (e) = (; +k,) (r(cose -cos~»)"

"o(e)=(; +k,H(coS(~_e(8, ~.8.»)-cOS~)Jr

The drawbar pull can hence be written as:

(II)

(12)

(13)

DP=rb

1rl.(f9)cosf9df9+ Jr1(f9)cosf9df9
o '.
'- ,-J O"I.(f9)sinf9df9- J0"1 (f9) sin f9 df9

o '.

(14)

The parameters employed in (10)-(14) are given in Table 2.



Table 2. Parameters Involved In Drawbar Pull Calculation

SYMBOL QUANTITY

r Wheel radius
b Wheel width
ej Angle corresponding to start of contact
e2 Angle corresponding to loss of contact
em Maximum stress angle
c Cohesion
rp Internal friction angle
i Wheel slip
n Sinkage exponent

ko km Pressme sinkage moduli

Governing equations of motion for the mobility prediction scenario can now be written as:

xdi;=xdx

and

.. DP
x = --- gsmlj/

m

(15)

(16)

where m is the vehicle mass, g represents the acceleration due to gravity and \jf is the angle of the incline w.r.t. the
horizontal.

3.1.1 Application of SRSM

As part of this approach, a reduced stochastic model is developed for drawbar pull (DP) considering c and rp as uncertain
parameters with normal distributions. Cohesion and internal friction angle parameters are represented as:

(17)

(18)

where ~c and ~'!' are standard normal random variables. Drawbar pull is now expressed as:

(19)

The parameters c and rp were chosen since they exhibit significant influence on DP. Although they are assumed to be
normally distributed, other possible probability distributions (such as uniform or beta distribution) can be considered as
well. The corresponding values for c and rp used in this analysis can be found in Table 3.

Table 3. Probability Distribution Information For Uncertain Terrain Parameters (c, rp)

PARAMETER
DISTRlBUTION

MEAN STD.DEV.
fuNCTION

c (Heavy Clay) Gaussian 69kPa 850 kPa
rp (Heavy Clay) Gaussian 34 deg 2.10 deg

c (Dry Sand) Gaussian 104kPa 0.125 kPa
rp (Dry Sand) Gaussian 28 deg 1.75 deg

3.2 Rollover Analysis considering Vehicle Parameter Uncertainty

Here a three degree of freedom vehicle model (see Figme 5) is considered that includes lateral acceleration, yaw and roll
dynamics. The roll and yaw moments of inertia are represented by Ix;; and Izz respectively, m is the total vehicle mass, ms

is the sprung mass and v is the longitudinal velocity of the vehicle. The front wheel steering angle is represented by o.
The linearized equations for this model are given as:



.... If/l If/l
mv(fJ+If/)- m,hcp = 'IFy =C/o__I - fJ) +C.(-· - fJ)

v v

.. . .
(1= + m,h2 )cp= 'IM, = m,ghcp+ m,hv(fJ+ If/)+ M,

(21)

(22)

(23)

where Cf and Cr are the cornering stiffnesses of the lwnped front and rear wheels, and It' and Ir are respectively the
distances of the front and rear axles from the eg. The suspension moment, represented by M s, is given as:

(24)

where kf and kr are the stiffnesses and bi and br are the damping factors for the front and rear axles respectively. It should
be noted that there is llllcertainty associated with the estimation of the values of the above vehicle parameters. This
uncertainty will be considered in the present analysis.

N, Nio-l

Fig. 5. Vehicle Model for Mobility Analysis

For measuring vehicle mobility, a simple rollover coefficient is employed that is similar to the one described in [24].
Using the principle of balance of moments and vertical forces, a rollover metric for the linear model above is given by:

2m (.. .. )
R =--, (h" +h) v(fJ+If/)-hcp

mgyw
(25)

where ha is the height of the roll axis above the grolllld and Yw is the track width. For this metric, absolute values of R
that are greater than 1 indicate vehicle wheel liftoff and thus impending rollover.

3.2.1 Application of SRSM

We define the state space, X as:

(26)

The variables related to suspension stiffness are represented as polynomial chaos expansions, using Hermite polynomials
of standard normal random variables. Here, Sl and Sz, which are used to represent the input llllcertainty in the system The
front and rear axle roll stiffness are considered to be normally distributed about their mean values. This is represented as:

(27)

(28)



TIlen the state variables can be represented as:

p

P(t,~) = LP/l)$/~)
;-0

(29)

• p •

1fI(t,S) =LIfI;Ct)<D/S)
j_O

(30)

p

~t,S)= LqJ/t)<D;CS)
)-0

(31)

• P •

qJ(t,s) = LqJ/t)<D;CE,)
;00

(32)

TIle parameter values considered for the ste ring stiffne are shown in Table 4.

Table 4. Uncertain Vehicle Parameters in Rollover Analysis

PARAMETlm
MEA

(Nm/rad)
TO. DEV.

(Nm/rad)

spectral stochastic analysis (11], [20] is perfomled u ing the above expan ion to obtain the time evolution of the
rollover coefficient, subject to various teering input nll1ctions ( inu oidal, ramp-like and a double lane change
maneuver).

4. RESULTS

4.1 Tl'3versal over Voce.1ain Terrain

Resulu' from analy is of the mobility prediction scenario described in Section 3. I are presented using SMC, HSMC and
SRSM methods are presented for iJlc1ina.tion angles ('{I) of 6° and 15° (see figure 6). It can be seen that the distributions
generated by the SRSM method are nearly identical to those generated by the SMC and LHSMC method.,. Increasing
the number of SMC and LHSMC mns slightly decrea es distribution variance, however in both cases the differences
among the three methods is small.

4.5
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Fig. 6. Probability plots for mobility prediction scenario, for small number of SMC and LHSMC runs (Jell) and large number (right)

TIle coefficient values obtained [or a 2"d order expansion of drawbar pull (19) considering C, qJ as the uncertain
parameters were:



The results predict that increasing the robot's initial velocity increases the probability of safe slope traversal, as expected.
Also, the minimum initial velocity required for successful traversal increases as the inclination increases. A clearly
defined "transition region" can be observed, where the probability of safe traversal is a function of terrain parameter
variance as well. This region effectively describes the "risk" of traversal at a certain critical velocity range.

Also, the computation time of the SRSM method is compared to SMC and LHSMC in Table 5, for the case of a terrain
inclination angle of 15 degrees. It can be seen that the proposed approach results in a significant computational
reduction compared to the baseline approaches. This suggests that on-line, real time implementation of the method is
feasible for simple models.

Table 5. Computation Time for Mobility Prediction Analysis

SIMULATION
TIME

METHOD
RUNS

TAKEN
(sec)

SMC 5000 55.750

LHSMC 1000 11.343

SRSM (2nd order) 0406

4.2 Rollover Analysis considering Vehicle Parameter Uncertainty

Results from analysis of the rollover scenario described in Section 3.2 are presented here. Simulations for various
vehicle maneuvers were conducted using the stochastic response surface method (SRSM), standard Monte Carlo (SMC)
and Monte Carlo Latin Hypercube Sampling (LHSMC). The accuracy of the SRSM is compared to that ofthe SMC and
LHSMC and the plots are presented in Figures 7 - 9. Close agreement between the three methods can be observed.
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Fig. 7. Vehicle Rollover Analysis for Sinusoidal Steering Input using Various Statistical Analysis Techniques
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Fig. 8. Vehicle Rollover Analysis for Ramp-Like Steering Input using Various Statistical Analysis Techniques
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Fig. 9. Vehicle Rollover Analysis for Double Lane Change Steering Input using Various Statistical Analysis Techniques

Stochastic analysis allows insight into the range of the variation of an output time series. In Figure 10, results are shown
for the steering angle and rollover coefficient for a double lane change maneuver, here including uncertainty bounds on
the 20- variation. In this particular analysis, it can be observed that while the mean absolute value of the rollover metric
(corresponding closely to the result from a deterministic simulation) remains less than one, the uncertain value exceeds
one, thus indicating a substantial risk of vehicle rollover when parameter uncertainty is explicitly considered.
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Fig. 10 Vehicle Rollover Analysis Using SRSM

The simulation times for the approaches are also compared (see Table 6) for the various steering inputs. Computation
time for the SRSM method is approximately two orders of magnitude lower than for LHSMC. All computations were
performed on a desktop PC running unoptimized Matlab code.

Table 6. Simulation Times using Various Statistical Analysis Techniques for Vehicle Rollover Analysis

STEERING INPUT SMC LHSMC SRSM
(2000 RUNS) (400 RUNS)

Sinusoidal 1920.1 s 793.688 s 6.691 s
Ramp-like 19335 s 7962l9s 6766 s

Double Lane Change 19527 s 808235 s 6797 s

4. 5. CONCLUSION

This paper has presented an approach to statistical mobile robot mobility prediction based on the stochastic response
surface method. This approach explicitly considers uncertainty present in vehicle and terrain physical parameter
estimates. Simulation results of simplified mobility prediction scenarios have shown that the proposed method
represents a significant improvement over conventional Monte Carlo methods in terms of computational efficiency, and



can be used for robustly and efficiently predicting the traversability of mobile robots in W1Structured environments.
Current work is focused on statistical modeling of more complex three dimensional UGV models.
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On the Optilnality of Dubins Paths
across Heterogelleous Terraill

Ricardo Ci. Sanfelice and Ernilio Frazzoli

Abstract

~Vle derive optimality conditions for the paths of a Dubins vehicle when
the state space is partitioned into two patches with dilIerent vehicle's
forward velocity.vVe recast this problem as a hybrid optimal control
problem and solve it using optimality principles for hybrid systems.
Among the optimality conditions, we derive a "refraction" law at the
boundary of the patches which generalizes the so-called Snell's law
of refraction in optics Lo the case of paths with bounded maximum
curvature.

1 Introduction

Control algorithms that are capable of steering autonomous vehicles to satisfy
a given set of specifications, like initial and final constraints 1 and at the
same time, guarantee certain optimality conditions are very appealing to
applications in robotics and aerospace. This has led researchers to strive for
control design tools that adequately incorporate both trajectory constraints
and measures of optimality. As a consequence, many results from the theory
of optimal controL in particular, those that guarantee time optimalitY1 have
found wide applicability in autonomous vehicle control problems.

Perhaps, the earliest result on time-optimal control laws for autonomous
vehicles modeled as a particle moving with constant, positive forward veloc­
ity and with constrained minimum turning radius is the work by Dubins
\Vhile Dubins used only geometric arguments to establish his results, a few
years later, the appearance of PontryagIJ1's Maximum Principle in [111 en­
abled the authors in [31 to systematically recover Dubins results. IVloreover,
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building from the work of Reeds and Shepp ) the application of Pontrya­
gin's optimality principle permitted the authors in [20, 3] to derive similar
results for a vehicle model yvithout forward velocity constraints.

In this paper, we consider autonomous vehicles with dynamics governed
by

lui s 1 1

v sin fJ
v cos fJ
1t

(1)

where (x, y) is the vehicle's position, fJ is the angle between the vehicle and
the vertical detennining the vehicle's orientation, 'U is the angular ac­
celeration input for the vehicle, and v is the vehicle's forward velocity. rrhis
vehicle model is usually referred to as Dubins vehicle. We consider the case
of heterogeneous velocity along the terrain where the vehicle is deployed.

different velocities; 'IJI and 02, define the constant, forward velocity of
Dubins vehicle on two patches of the plane; patch 1\ and patch P2 , depicted
in Figure I. We are interested in the following problem:

Find the mininwm-time path fOT Dubins vehicle from an ini­
tial point and angle in patch PI to a final point and angle in
patch P 2 .

Figure 1 shows possible initial and final vehicle configurations, which are
denoted by (:to, rl, fJO) and (Xl, 111, fJl), respectively, for which a rninimum­
tirne path is to be found. Ib the best of our knowledge, the problem described
above has not been addressed in the past, perhaps due t.o the fact that the
classical Pontryagin's lVlaximum Principle is not applicable because of the
discontinuous behavior at the common boundary between the patches.

By recasting this problem into an optimal hybrid control problem and ap­
plying principles of optimality for hybrid systems, we establish the following
conditions that illuminate important characteristics of optimal paths:

• The portions of the paths that Temain in eitheT patch aTe Dubins opti­
mal.

• Optimal paths are such that, at the boundary between the patches) their
t~/pe does not change; that is, the type of path Tight before anA after
cTOssing the boundary are the swne.
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• Optimal paths that cross the boundary describing a straight line are
orthogonal to the boundary .

• The angles of the path pieces before and after crossing the boundary
satisfy a "refraction" law, which consists of a generalization of Snell's
law of refraction in optics.

Applications of these results include optimal motion planning of au­
tonomous vehicles in environments with obstacles, different terrains prop­
erties, and other topological constraints. Strategies that steer autonomous
vehicles across heterogeneous terrain using Snell's law of refraction have al­
ready been recognized in the literature and applied to point-mass vehicles;
see, e.g., [1, 13]. Our results extend those to the case of autonomous vehicles
with Dubins dynamics.

The remainder of the paper is organized as follows. Section 2 discusses
related background to the optimal control problem outlined above and intro­
duces general notation. In Section 3, we present a hybrid model which, as
shown in that same section, enable us to formulate the problem of study in
an optimal hybrid control framework. In Section 4, we establish necessary
conditions for optimality of paths including a refraction law at the boundary
of the patches. Due to space constraints, the technical proofs are omitted
and will be published elsewhere.

----------y ~ 0

:81

(Xl,yl,81~

Figure 1: Dubins vehicle on an heterogeneous terrain. The initial configu­
ration is given by (xO,yO,BO) and the final configuration by (x\y\B1). The
forward velocity in patch P 1 is smaller than the forward velocity in patch P2 .
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2 Background

Pontryagin's Maximum Principle [11.] is a very powerful tool to derive neces­
sary conditions for optimality of solutions to a dynarnical systern. In words,
this principle establishes the existence of an adjoint function with the prop­
erty that, along optimal system solutions, the Hamiltonian obtained by com­
bining the system dynarnics and the cost function associated to the optimal
control problern is minimized. In its original fon:n, this principle is applicable
to optimal control problems with dynamics governed by differential equations
with continuously differentiable right-hand sides.

The shortest path problem between two points yvith specific tangent di­
rection and bounded maximum curvature has received wide attention in the
literature. In his pioneer work in 1 by means of geometric arguments,
Dubins showed that optimal paths to this problem consist of a smooth con­
catenation of no more than three pieces, each of them describing either a
straight line, denoted by L:, or a circle, denoted by e (when the circle is
traveled clockwise, we write e+, while when the circle is traveled counter­
clockwise, we write e-), and are either of type eee or e.ee, that is, they are
mnong the following types of paths

(2)

in addition to any of the subpaths obtained when some of the pieces (but
not all) have zero length. More recently, the authors in [3] recovered Du­
bins' result by using Pontryagin's Ivlaximum Principle; see also [20]. Further
investigations of the properties of optimal paths to this problem and other
related applications of Pontryagin's l\1aximum Principle include 116,2,41, to
just list a few.

Optimal control problems exhibiting discontinuous/impulsive behavior,
like the heterogeneous version of Dubins' problem outlined in Section 1, can­
not be using the classical Pontryagin's Maximum Principle. Exten­
sie)Hs of this principle to with discontinuous right-hand side appeared
in [17] while extensions to hybrid systems include l181 1 ,and l151. These
principles establish the existence of an adjoint function yvhich, in addition to
conditions that parallel the necessary optimality conditions in the principle
by Pontryagin, satisfies certain conditions at times of discontinuous/jumping
behavior. The applicability of these principles to relevant problems have
been highlighted in "18 1 10, 5:. These will be the key tool in deriving the
results in this paper.
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2.1 Notation

We use the following notation throughout the paper. lli.n denotes n-dimensional
Euclidean space. lli. denotes the real numbers. lli.;:::o denotes the nonnegative
real numbers, i.e., lli.;:::o = [0,(0). N denotes the natural numbers including
0, i.e., N = {O, 1, ...}. Given kEN, N<k denotes {O, 1, ... , k}. Given a set
3, 3 denotes its closure and 3 0 denotes its interior. Given a vector x E lli.n ,

Ixl denotes the Euclidean vector norm. Given U:= [-1,1]' U denotes the
set of all piecewise-continuous functions u from subsets of lli.;:::o to U.

3 Problem Statement

In this section, we formulate the problem of steering Dubins vehicle across
heterogeneous terrain as a hybrid optimal control problem. We present a
hybrid model and introduce the optimal control problem. An alternative
approach is to treat this problem as a differential equation with discontin­
uous right-hand side and use the results in [17]. However, a hybrid control
systems approach is not only more convenient from a modeling point of view
as it enables the use of a sound concept of solution but also facilitates the
application of more explicit optimality principles for hybrid systems, like the
ones in [18].

3.1 Hybrid model

We denote by 1iv the hybrid system that captures the dynamics of Dubins
vehicle along the patches. Let Vi, V2 E lli.>o, Vi i=- V2, be the forward velocity
of the vehicle on patch Pi and patch P2 , respectively, where

Pi := {[x y B]T E lli.3 I y ::::: O} ,

which share a common boundary Pi n P2 = {[x Y B]T E lli.3 I y = O}; see
Figure 1. Let q be a discrete state taking value in Q := {1, 2} that indicates
the current patch to which the vehicle belongs to. Following the vehicle's
dynamics in (1),

[~]
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with

[
X]• ,-1[1)3

~.= ~ ell', and

define the continuous dynarnics (or jimus) of }ll), where ~ is the continuous
state and u c U is the cont.rol input rrhen, during flows, ~ captures the
vehicle dynamics on the q-th pat.ch while q remains const.anL \Ve model the
change of patch so that. it occurs when U is zero and t.he vehicle is moving
away from t.he current. patch. rrhen, defining a function s : CJ------ {----1, I}
where s(1) -----1 and 8(2) = L t.he discrete dynamics (or jumps) of HI) are
given by

(4 )

which implies that at jumps ~ does not change while q is toggled between 1
and 2. Finally, we denote by ( := I~T q!T the full state of 7II)'

Follmving the hybrid systems framevvork outlined in and further es-
tablished in [9, 14], we can rewrite 'Hz, as

by defining

f ir u)
"'-,, '

g(()
(CC
(c D

qEQ
[
I' 1,0\]

__fl',t-."i,',) '.:::-- . q\<;,1J; C' ':::-- U('C' x Iqt\- ..,.cO' - . .q' '1 J;,

U(Dq x {q}),
qEQ

where Co: P q and Dq : (~, lu O,s(q)vqcosO>O}foreachqcQ.
Then, n 1J is determined by the data (f, C, g, D), where f is the flow map, C is
the flow set, 9 is the jnmp map, and D is the jnmp set. As in , solutions to
nl) are given by hybrid arcs on hybrid time domains. Hybrid time domains
use a variable t to indicate flow time and an index j to keep track of the
number of jumps, and hence, parameterize solutions by (t, j) _A subset E of

x N is a hybrid time domain if it is the union of infinitely many intervals of
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the form [t j , tj+l] x {j}, where °= to ::; t1 ::; t2 ::; ... , or of finitely many such
intervals, with the last one possibly of the form [tj , t j +1] x {j}, [tj , tj+l) x {j},
or [t j , (0) x {j}. (Note that the t component of elements (t,j) E E does not
uniquely define the index j since, in this framework, multiple jumps at the
same t are possible.) Then, given a control input u E U, solutions to Hv

are given by functions, called hybrid arcs, ( : dom ( -----t lFt4 , where dom ( is a
hybrid time domain, t -----t ~(t, j) is a locally absolutely continuous function for
each fixed j, t -----t q(t, j) is a piecewise constant function for each fixed j, and
( satisfies the flow and jump conditions mentioned above. More precisely,
given an input u E U, a hybrid arc ( is a solution to the hybrid system H v if
((0,0) E 0 U D, dom( = domu, and:

(81) For all j E N and almost all t such that (t, j) E dom ( \

((t,j) EO, ((t,j) = f(((t,j),u(t,j)) .

(82) For all (t,j) E dom( such that (t,j + 1) E dom(,

((t,j) ED, ((t,j + 1) = g(((t,j)) .

Inputs u given as signals t -----t u(t) for each t E lFt>o can be rewritten on a
hybrid time domain E by defining, with some abuse of notation, u(t, j) :=
u(t) for each (t, j) E E. Note that solutions to H v exist from every point in
o UD = lFt3 X Q. In particular, solutions are allowed to flow in the boundary
Pl n P2 with either q = 1 or q = 2; such a feature cannot be captured with
a differential equation with discontinuous right-hand side or with a (regular)
differential inclusion without adding extra solutions. Also note that since the
sets D q are not closed subsets of lFt3 , the regularity property for D required
in [9, 14] does not hold (the flow map, jump map, and jump set of Hv satisfy
the properties therein). While such a regularity is not required for the results
in this paper to be true, it turns out that, as shown in [14], it highlights the
presence of undesirable solutions if the sets D q were to be closed or small
noise entered through the state.

3.2 Hybrid optimal control problem

We consider the following hybrid optimal control problem. Given (XO ,yO, eO) E

Of and (xl, yl, ( 1) E o~:

l((t,j) denotes the derivative of t f-+ ((t,j) with respect to t for a fixed j, which exists
for almost every t such that (t, j) E dom ( n ([t j , tj+l] X {j}).
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(*) Minimize the transfer time T E 1Ft>0 subject to:

(C1) Dynamical constraint: dynamics of 1iv given in (3)-(4).

(C2) Input constraint: U E U.

(C3) Initial and terminal constraints: every optimal solution (~, q) to
1iv satisfies the initial constraint (x(O, 0), y(O, 0),61(0,0)) = (XO, yO, 61°)
and the terminal constraint (x(T, J), y(T, J), e(T, J)) = (xl, yl, 611

)

for some (T, J) E dom(~, q).

The number of jumps required to solve (*) is finite, given by J - 1, and no
smaller than one; hence, optimal solutions to (*) are not Zeno. The initial
and final constraints are such that solutions can flow from some time before
their first jump and after their final jump (that is, the first jump is at some
(tl' 0) with h > 0 and the last jump is at some (tJ' J - 1) with tJ < T).
This is a technical requirement for the application of the hybrid maximum
principle in [18] in the next section.

4 Necessary conditions for optimality

Necessary optimality conditions for solutions to 1iv solving (*) can be ob­
tained using the principle of optimality for hybrid systems in [18] (see also
[19] and [10]). Under further technical assumptions, Theorem 1 in [18] estab­
lishes that there exists an adjoint pair (\ Ao), where A is a function and Ao is
a constant, which, along optimal solutions to (*), satisfies certain Hamilto­
nian maximization, nontriviality, transversality, and Hamiltonian value con­
ditions. In particular, [18, Theorem 1] can be applied to the optimal control
problem (*) to deduce the following optimality conditions for the paths.

Proposition 4.1 [properties of (*)j For each optimal solution (~, q) to (*)
with optimal control u, minimum transfer time T, and J -1 number ofjumps,
there exists a function A : dom A -----t 1Ft3, A := [ex j3 i] T, dom A = dom(~, q) ,
where t I-----t A(t, j) is absolutely continuous for each j, (t, j) E dom A, and a
constant Ao E 1Ft defining the adjoint pair (A, Ao) satisfying:

. 8H (t .)
a) Ao ~ 0 and A(t,j) = - ;~'J (~(t,j),A(t,j),Ao,U(t,j)) for almost

every t E [t j , tj+1L (t,j) E dom A, where, for each q E {1,2L H q :
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]R3 X]R3 x]R X xU -----t ]R is the Hamiltonian associated with the continuous
dynamics ofHvl which is given by

for each q E Q.

b) There exist a, j3 E ]R and, for each j EN::;; 1 there exists Pj E ]R such
that a(t,j) := a for all (t,j) E dom(~,q), j3(t,j) := 73 + Pj for almost
all t E [O,T], (t,j) E dom(~,q), andi(t,j) = i(t,j + 1) for each (t,j)
such that (t,j),(t,j + 1) E dom.\.

c) For every (t,j) E dom(~,q) suchthati(t,j) -::j= O, u(t,j) = sgn(r(t,j));
and for every (t,j) E dom(~,q) such thati(t,j) = 0, u(t,j) = 0.

d) For every (t,j) E dom(~,q) such that i(t,j) = 0, j3(t,j)tan()(t,j)
a(t,j).

Remark 4.2 The proof of Proposition 4.1 uses the fact that H v can be as­
sociated with a hybrid system H~ given in the framework in [18] and that
every solution to H v solving (*) is also a solution to H~ (agreeing with the
concept of solution in [18] 2). This property follows by construction of H~.
Hybrid systems in [18] and [10] have a continuous state ~ with flows governed
by ~ = fq (~, u) when ~ belongs to a smooth manifold M q1 where q E Q is
a discrete state (which remains constant during flows). Jumps from mode q

to mode ql satisfy: 1) the switching condition (~, () E Sq,ql, where ~ is the
continuous state before the jump, ( is the continuous state after the jump,
and Sq,ql is the switching set; and 2) a temporal constraint enforcing that the

2In [18], solutions to hybrid systems are given on compact time intervals by abso­
lutely continuous functions tj on [tj, tj+l] such that, for each j E {1, 2, ... , v} (with
finite v E N) and for finite sequences of logic states {qj} and control inputs {Uj}, sat­
isfy the flow condition ej = jq, (tj(t), Uj(t)) for almost all t E [tj, tj+l] and the jump
condition (tj(tj),tj+l(t j )) E Sq"qH1 for each tj, where t j denotes the jump time (which
is assumed to belong to the interior of the compact time interval where solutions are
defined) and Sq"qH1 is the switching set at the j-th jump (see [18, Definition 3] for
more details). Hence, passing from a solution ( on a bounded hybrid time domain dom(
with jumps at different (tj,j)'s, first jump at (h,D) with tl > to, and last jump at
(tJ,J -1) with tJ < T, where T:= sup{t E lIho I ::Jj EN such that(t,j) E domO and
J := sup {j E N I ::Jt E R>o such that(t, j) E do~ (}), to a solution as in [18, Definition 3]
is straightforward.
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jUinp tilne for the current nwde is in the set Jq c lFt. To obtain 1i:" the sets

Cq in 1i,! are replaced by smooth manifolds .A4. q , Cq C',' /vl q ) while the rump
set and the jUinp map are replaced by the switching condition given by

8 1 ~ = ,Sq 1 = ~~ :=( \f F,,t\ I If = O,,t c [~3 1.f" ,
j~ L j l ."':> c ;,.) Co .' ;,. .'

and .11 = h = JR;. T'hen. the properties of the adjoint pair guaranteed by
[fS) 'Theorem .1/ mdomaJicall,t) imply item a) in Propr).<rdion 4.1 (sec (18.
Definition . 'The condition j()r optimalit,t) at switches for the adjoint state
A implies that only the second component of A, i. e. B, has a jump 1.uhile the
other tV)O components arc continuous (see Remark 4.3). T'his impli{s item
b) in Proposition 4.1. T'he Hamiltonian ma:r:imi.zation condition guaranteed
to hold by {lS, T'heorem 1/ implies that

for almost every (; C Itj , t j +1]. (t,)) c dOTn A (.sec [fS) Definition .1 Of). It
follows that control law in item c) in Proposition 4.1 maTimi.zes Hq .

By integrating the adjoint state A when 'II = O. Proposition 4.1. d follows
automaticall,t). II

Remark 4.:-1 (lS.Theorem 1] implies that at jumps, the optimal solution..
optimal control, and adjoint pair satishj the switching condition C·· A(t;; j), A(t, }+.

1)) c Kf for each} for which there uists t C [0, T] Such that (t;}}) (t, j +
1) c dam A, where Kt is the polar of the Boltyanskii approTimating cone to

8 q(t,j),q(t,j+l) ,--~). The set S is Such that Kt is given by

since the Boltyanskii approTimating cone to 8 is the set itself Then) since
by definition of S the second and fou.rth components of v in Kt are 2ero,
(-A(t,j), A(t, j + 1)) C Kf if and only if o(t,]) u(t,j + 1), j)

j + 1), which intplies that only /3 can have a jump. This property can
also be 0 btained nsing the optinwlity principles in [f5/. II
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4.1 Optirnality of paths

'"['he properties of adjo int pair (A, A,,) and the control input'll. in Propo-
sition 4.1 can related to properties of the continuous component ~ of
solutions to (k). These characterize the optimal paths from given initial and
terminal constraints, as the follovving theorem states.

Theorem 4.11 [optimality conditions of solutions to Each optimal soln­
tion (~) q) to (*) with optimal control'Lt, minim~1Lln transfer time T) and 1 - 1
nnmber of jnmps is snch that.'

a) The continuous componen.t (" is a snwoth concatenation of finitely many
pieces front the set {e! ~ e ,C}.

b) The input component 'Lt is piecewise constant with finitely many pieces
taking valne in {-1 ~ 0, 1}.

c) Each piece of the contimwns component ~ contained in Gal q E q, is
Dnbins optimal between the first and last point of such piece, i. e" it is
given as in (2).

d) For each (t,j) E dom(~~q) for which (x(t~j),y(t,]),O(t)j)) ~:: Dq(t,j) ,

the solntion has a jnmp and:

d.l) If the path before the jnmp is C then the path after the jump is C.

d.2) If the path before the jump is L: then the path after the jump is L:
and O(t, j) is ?ero or any multiple of if.

Remark 4.5 The proof of Theorem .r4 uses Proposition 4.1 and the fact
that, since the jump condition in 1iv is time independent (that is, 11 .::::: h·:..·

the Hamiltonian value condition guaranteed to hold by [18, Theorem 1]
implies that there exists he E such that

fe)T almost every t E [t j , t j III i (t,.7) E dom), (see /l8, Definition 1 •
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Figure 2 depicts optimal paths around the boundary of the patches. Item
d.l) in Theorem 4.4 implies that optimal paths that cross the boundary are of
the same type at each side of it. More precisely, if before crossing the bound­
ary, the optimal path is of type C (C+ or C-), then the optimal path after
crossing the boundary is also of type C (C+ or C- , respectively). Figure 2(a)
depicts an optimal path of type C+ Statement d.2) in Theorem 4.4 implies
that £-type paths at the boundary are optimal only if they are orthogonal
to the boundary. Figure 2(b) depicts this situation.

Po

(a) C+-type of path at the bound­
ary. Path pieces C+ in patch PI
with radius Tl = VI and in patch
P2 with radius T2 = V2, V2 > VI·

/L.

-----++----Pl n P2

/L.

\
(b) L- type of path at the boundary.
The angle between the path and the
boundary in each patch is 7r /2.

Figure 2: Optimal paths nearby the boundary: paths of types C+ and L.
satisfying the necessary conditions in Theorem 4.4.

Using Theorem 4.4, it is possible to determine optimal families of paths
for a class of solutions to (*). The following statements follow directly from
Dubins' result and Theorem 4.4.

Corollary 4.6 [optimal paths wione jump} Every optimal solution (~, q) to
(*) with only one jump is such that the continuous component ~ is a smooth
concatenation of C, L. paths pieces and is given by one of the following four
types of paths

(5)
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in addition to any such path obtained when some of the path pieces (but not
all) have zero length. Furthermore, if the path piece intersecting the boundary
is of type £, then the continuous component ~ describes a path of type C1£lC2
(or any such path obtained when C1 and/or C2 have zero length).

A consequence of Theorem 4.4 that is useful when computing optimal
paths is the following.

Corollary 4.7 [nonoptimal paths} For the optimal control problem (*), solu­
tions to H v satisfying (Cl)-(C3) with the continuous component ~ describing
paths that change at the boundary are nonoptimal, that is, paths that before
and after the boundary are given by C+ and £, C- and £, £ and C+, £ and
C-, C+ and C-, or C- and C+, respectively, are nonoptimal.

Figure 3 depicts two of the path types that Corollary 4.7 determines to
be nonoptimal.

,,,
•··,

••·\ ....
............

(a) Nonoptimal C+ /C--type path at
the boundary. Path piece C+ in
patch PI with radius Tl = VI and
path piece C- in patch P2 with ra­
dius T2 = V2, V2 > VI·

- .~ ..........
Po

(b) Nonoptimal L/C--type path at
the boundary. Path piece C- In

patch P2 with radius T2 = V2.

Figure 3: Nonoptimal paths at the boundary: paths of type C+ /C- and £/C­
changing at the boundary and hence, not satisfying the necessary conditions
for optimality in Theorem 4.4.
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4.2 Refraction law at boundary

The optimal control law given in Proposition 4.1.c and the properties of the
component r of the adjoint state A given in Proposition 4.1.b imply that the
control law is constant at jumps of Hv (note that u is piecewise continuous
for each fixed j with discontinuities at (t, j) 's where the path type changes).
While e remains constant at the boundary, the initial and final angles (and
their variations) of the paths intersecting the boundary satisfy the following
algebraic condition involving the patch velocities V1 and V2.

Theorem 4.8 [refraction law for (*)] Let (~,q) be an optimal solution to (*).
Let e1 and e2 denote the initial and final angle, respectively, of a path piece
intersecting the boundary P1 n P2 , as show in Figure 4. Let !:le1,!:le2 E 1Ft be
given by !:le1 := e* -e1 , !:le2 := e2 -e*, where e* is the angle between the path
and the boundary P1 n P2 at their intersection (with respect to the vertical
axis). If the path piece intersecting P1 nP2 is of type C, then V1, V2, e1 , e2 , !:le1

and !:le2 satisfy

(6)

and if the path piece intersecting P1 n P2 is of type £, then e1 and e2 are
equal to 7f.

Remark 4.9 Equation (6) in Theorem 4.8 implies that for a path of type C
intersecting P1nP2 to be optimal, e1 , e2 , !:le1 and !:le2 shown in Figure 4 must
satisfy (6). VVhen the path intersecting P1 nP2 is of type £, by Corollary 4.6,
the path £ is orthogonal to P1 nP2 and consequently, there is no ((refraction')
at the boundary. This is depicted in Figure 2(b). The proof of Theorem 4.8
follows from the properties of the optimal solution and adjoint state at jumps
stated in Theorem 4.4 and Proposition 4.1.d. •

Equation (6) can be interpreted as a refraction law at the boundary of
the two patches for the angles (and their variations) e1 , e2 (and !:le1 , !:le2 ).

This parallels Snell's law of refraction in optics, which states a relationship
between the angles of rays of light when passing through the boundary of two
isotropic media with different refraction coefficients. More precisely, given
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(a) Refraction for LCL-type of path
nearby the boundary. The L path
pieces define the angles B1 , B2 and
their variations ~Bl, !::J.B2 .

••••,,,,
',--------';,--------',,.L----=":::=f--\.... \'k~"'

"'.<:;~c-
(b) Refraction for CCC-type of path
nearby the boundary. The tangents
(plotted with .- lines) at the point
of path change define the angles
B1, B2 and their variations D.Bl, D.B2 .

Figure 4: Refraction law for paths at the boundary. The initial and final
angles of optimal paths intersecting the boundary given by 81 and 82 , re­
spectively, and their variations (~81, ~82) satisfy equation (6), which is a
generalization of Snell's law of refraction.

two media with different refraction indexes V1 and V2, Snell's law of refraction
states that

(7)

where 81 is the angle of incidence and 82 is the angle of refraction. This
law can be derived by solving a minimum-time problem between two points,
one in each medium. Moreover, the dynamics of the rays of light can be
associated to the differential equations i; = Vi, where Vi is the velocity in the
i-th medium, i = 1,2. Theorem 4.8 generalizes Snell's law to the case when
the dynamics of the rays of light are given by (1). In fact, (6) reduces to
(7) when ~81 = 81 and ~82 = 82. In the context of autonomous vehicles,
(6) consists of a generalization of the refraction law for optimal steering of a
point-mass vehicle, as in [1, 13], to the Dubins vehicle case.
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To further illustrate our results, consider V1 = 2V2 > 0, (XO, yO, eO), and
(xl, yl, e1

) as depicted in Figure 5. A path corresponding to a solution to H v

((·XO yO gO)
: l l ,

, ', I, ,, ,, ,
, --

(a) (Nonoptimal) path of type CLC.

~
((XO yO gO),

: l l ,

, ', I, ,, ,, ,
, --

,,,,

(b) Path of type CLCLC.

Figure 5: Optimal control of Dubins vehicle on patches with velocities V1 =

2V2. The path depicted in (a) is nonoptimal since its £-type piece is not
orthogonal to the boundary P1 n P2 (it is also nonoptimal since it does not
exploit the fact that the maximum velocity in patch P1 is twice faster than
in patch P2 ). The path depicted in (b) is a candidate for optimality as it
satisfies the conditions in Theorem 4.4 and Corollary 4.6.

matching the initial and terminal constraints is shown in Figure 5(a). Since
the £-type path piece smoothly connecting the C-type paths at (XO, yO, eO)

and (Xl, yl, e1
) does not intersect the boundary P1 n P2 orthogonally, The­

orem 4.4.d implies that it is nonoptimal (see also Corollary 4.6). Note that
this path is not taking advantage of the fact that in patch P1 , the vehicle
can travel twice faster than in patch P2 . Paths candidate for being opti­
mal are like the one depicted in Figure 5(b) as it satisfies the conditions in
Theorem 4.4 and Corollary 4.6.

5 Conclusions

We have derived necessary conditions for the optimality of paths with bounded
maximum curvature. To establish our results, we formulated the problem as
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a hybrid optimal control problem and used optimality principles from the
literature. Our results provide verifiable conditions for optimality of paths.
These include conditions both in the interior of the patches and at their com­
mon boundarY1 as well as a refraction law for the angles which generalizes
Snell's law of refraction in optics to the current setting. Applications of our
results include optimal motion planning tasks for autonomous vehicles with
Dubins vehicle dynamics.
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A Hybrid COIltrol Framework for
Robust Maneuver-based

MotioIl Planning

Ricardo G. Sanfelice and Emilio Frazzoli

Abstract

We introduce a modeling framework for robustness of maneuver­
based motion planning algorithms for nonlinear systems ,'lith sym­
metries. Our framevlOrk implements a hybrid controller that robustly
combines motion primitives, ,vhich consist of trim trajectories and ma­
neuvers, from a pre-defined library. '1'he closed-loop system is viewed
as a hybrid system with flows given by a differential equation, jumps
given by a difference equation, and two sets where these dynamics are
aHowed. \'le show that our hybrid controHer for implementation of
motion planning algorithms confers to the closed-loop system robust­
ness properties to a large dass of perturbations.

1 Introduction

Motion planning algorithms are comrnonly applied in robotics as a rnethod
to solve steering problerns. In a real-world scenario, the motion planning
task needs to be accornpIished in the presence of obstacles, rneasurement
error, exogenous disturbances, and unmodeIed dynamics guarantee some
degree of robustness, motion planning algorithms are usually blended with
feedback control algorithms, which track the output of the motion planner;
see, e.g., l1,11,12,14,181.

The motion planning problem itself is typically recast as an optimal con­
trol problem with cost function and constraints stemming from the given task
to be accomplished along with its specifications. In complex motion planning
problems, online computation of optimal control policies is not always feasi­
ble. A motion planning technique suitable in such cases was proposed in [6]
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for general nonlinear systems with symmetries. A motion plan in [6] is given
by a concatenation of a finite number of motion primitives selected from
a pre-defined library and implemented in a ITwnwver automaton. Motion
primitives were defined in as equivalence classes of trajectories 1 induced
by symmetries in the system's dynamics, e.g' 1 invariance vvith respect to time,
translations. and rotations.

One of the main features of the maneuver-motion based approach is that
each element in the motion primitives library can be designed ofr-line subject
to particular specifications, like optimality, state constraints, etc., relaxing
in this way on-line computation requirements; see, e.g., its applications to
l"·j')('t'I'·'''' )'11 I'c' 7 'I Q] 'H'('\'JI"":.r 't11'1:' 11')':.1'11''''1 ,"'(' Il')ly'I)')':'''' Il')('t'I")') 1')1'1'11')1'1' 'IV'''' I'llc.,,) . "" . .'.J , , .. u. .. ,) ., ., v " . , . ,t:i. ". c., .. J ". • . "c.. ,) . .J. t ' ". ) t;:, , "

an open-loop manner, which restricts its application to nominal scenarios,
that is, those without perturbations. IVIoreover, the fact that the trajectories
resulting from this approach are not necessarily smooth, renders the task
of robustifying motion plans via feedback control challenging since standard
trajectory tracking control design techniques are not applicable.

In this paper) we propose a hybrid control algorithm that executes maneuver­
based motion plans and combines state feedback control laws for nonlinear
systems with symmetries. The purpose of our hybrid controller is to provide
a control framework for maneuver-based motion planning featuring robust­
ness properties to perturbations. \Ve show that this framework results in a
hybrid system with implementable semantics, and hence, useful experimental
setups. This class of hybrid systems has been recently introduced in [8,9]
Hlotivated by the pursue of robustness of asymptotic stability Our control
framework for Inaneuver-based motion planning also borrows ideas from the
techniques in [161 for robust combination of state feedback and open-loop
controllers, and also from the invariant constructions in

'rhe paper is organized as follows. Section 2 introduces notation and basic
definitions regarding nonlinear s.ystemswith symmetries, motion primitives
and plans, and hybrid Section :3 introduces our hybrid control
framework for motion planning, while Section 4 states its main properties.
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2 Preliminaries

2.1 Notation

lFt denotes the real numbers. lFt;::o denotes the nonnegative real numbers,
i.e., lFt>o = [0, (0). N denotes the natural numbers including 0, i.e., N =

{O, 1, ...}. N<k (N<k) denotes numbers in N from 0 to k - 1 (from 0 to
k, respectively). lFtn denotes the n-dimensional Euclidean space. lffi de­
notes the open unit ball in a Euclidean space. Given a set 8, 8 denotes
its closure and 8 0 denotes its interior. Given sets 81,82 subsets of lFtn ,

81 + 82 := {Xl + X2 I Xl E 81 , X2 E 8d. Given a vector X E lFtn , Ixl de­
notes its Euclidean norm. The equivalent notation [xT y T]T, [x y]T, and
(x, y) is used for vectors. Given a function f : lFtm _ lFtn , its domain of
definition is denoted by domf; i.e., domf := {x E lFtm I f(x) is defined}. A
function a : lFt>o - lFt>o is said to belong to class Koo if it is continuous, zero
at zero, strictly incre;sing, and unbounded. PCO(lFt;::o, lFtm ) is the set of all
piecewise continuous signals j3: domj3 _lFtm

, domj3 C lFt;::o.

2.2 Motion planning for nonlinear systems with sym­
metries

We consider nonlinear control systems of the form

P: x = f(x,u) (1)

where f : lFtn x lFtm _ lFtn is a locally Lipschitz function, x E lFtn is the
state, and u E lFtm is the control input. We focus on a particular subclass of
nonlinear systems P, those satisfying certain symmetry properties. Next, we
review and adapt some of the concepts in [6] for the purposes of this paper.

2.2.1 Nonlinear systems with symmetries

A large class of mechanical systems are invariant under certain transforma­
tions of their state. These include mobile robots as well as more general
autonomous vehicles, like several helicopters and airplanes models, among
others. General invariant transformations can be characterized with the the­
ory of Lie groups (see [2] for an introduction to Lie groups and [13] for
applications to mechanics).
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Let Q be a finite-dimensional Lie group, and let e be its identity element.
It is said that \If is a left action of the group Q on lFtn if \If : Q x lFtn -----t lFtn

is a smooth map such that \If(e, x) = x for all x E lFtn and \If(g, \If(h, x)) =
\If(gh,x) for all g,h E Q, x E lFtn . Let 9 be the Lie algebra of Q.

Definition 2.1 (symmetry of P) The nonlinear system P is invariant with
respect to the left group action \If if for all g E Q, Xo E lFtn , and J-l E

pco (lFt>o, lFtm ), each solution (in the appropriate sense1) to P starting from
Xo with-u(t) =J-l(t), denoted byt 1----+ ¢(xo,J-l;t), is such that \If(g, ¢(xo,J-l; t)) =

¢(\If(g, XO), J-l; t) for all t E dom ¢. •

Definition 2.1 states that P is invariant if the left action \If commutes with
the map from initial conditions.

2.2.2 Library of motion primitives

Trim trajectories and maneuvers define our "library" of primitives for motion
planning; see also [6, Section II I].

Definition 2.2 (trim) A 0 1 function x : [0, T] -----t lFtn is a trim trajectory
for P if there exists ~ E g, called the trim velocity vector, and J-l E lFtm I called
the trim input, such that

x(t)

x(t)
\If(exp(~t),x(O)) for all t E [0, T] ,
f(x(t), J-l) for almost all t E [0, T]. •

(2)

When the right-hand side of P is locally Lipschitz, every trim trajectory x
for P is uniquely defined by its velocity ~ and initial condition xo. We shall
assume the following property throughout the paper.

Standing Assumption 2.3 The function f : lFtn x lFtm ----t lFtn is locally
Lipschitz continuous. The nonlinear system P is invariant under the action
of \If. •

Then, for the nonlinear system P with symmetry group Q, we store ~ and XO
in the set of trim trajectories, which is denoted by T(P, Q) c 9 x lFtn .

lThis property does not depend on the notion of solution used. It is required to hold
for each (perhaps nonunique) solution to P on its domain.
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Definition 2.11 (maneuver) A C 1 function x : [0, T] ----+ zs a maneuver
for P if there exist a function, /3 E peo ), called the maneuver input,
Bnch that

'/t.-) j"(- /\ c)/\):1;~, = .:Z:~{!' lJ ~(J fOT almost all t. E [0,

9 E g) called the maneuver displacement) satisfying

- ,1,( (' x-.IO\ \
- '±'VJ' \. JJ

and tTim traJectoTieB :1;' : [0, ......, , : [0, ......, that aTe compatible
with x! z. e.! theTe exist matching displacements g', g'1 E Q such that

ni) x(Tl = \jj( all 111 \fni)Vi, . ! - - \,j ,.,) .vi· II

Remark 2.5 The matching displacements g' and g'1 in Definition guaT­
antee that tTirn trajectories and nwneuvers can be concatenated. lVlare pTe­
cisely, the left action W v;ith displacement g' guarantee's that the end point
of the (Iell, compatible) trim trajectory can be concatenated with the initial
point of the maneuver x! while the left action 1]1 with displacernent glt guar-
antees that the initial point of the (right compatible) trim tT(};jectory can
be concatenated luith the final point of the manem;eT x. II

Maneuver information for P with syrmnetry group 9 is stored in the set
;\.1 (P, g). By the regularity properties of f, a maneuver :z: for P can be gen­
erated by only knowing the input {3 applied to P and the initial condition xO.

By construction, the application of (3 at TO causes a rnaneuver displacement
given by (l E g.

Follmving the definitions above, a ((library" of motion primitives for P
with symmetry group 9 is given by (T(P,Q),/'vf(P,Q)). Let QT,QM c: N
be compact and disjoint sets, and define Q :-::::: QT U QI'c1' The set QT (re­
spectively, Q1'4) is such that each of its elements is uniquely associated to
a trim trajectory (respectively, to a maneuver). T\lore precisely, for each
q E QT, (~q, x;) E T (P, Q) defines the trim trajectory (t) 1]1 (exp(';qt) , T;)
with xq(O) . x~, while for each q E Qj\.f, T~,gq,Tq) E ;w(P,Q) .

peo x x Q x It\ correspond to the input to generate the ma­
neuver T q from T~, which, after Tq units of time, results in a displacement
given by (lq.
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2.2.3 J'vlotion plan

/\ motion plan 'U is denoted by

where k c is an odd nUHlber and:

• For each odd number) C l"\~:Sk, qj C qI'.

• For each even number j C , (jj C Q}.;! and the )-th maneuver is com-
patible with the U----- 1)-th trim trajectory with matching displacernent
9j and with the (j --1-- 1 h trirn trajectory with matching displaceHwnt

f/

9j·

• For each odd number J C <k, T~j c defines t.he time to execut.e
the qrth trim traject.ory, 1'he nonnegative constant. T~_l. for the last
trim trajectory can be eit.her finite or infinit.e.

In other words , a motion plan v is given by a sequence {Vj }J=u where
V2, 04, ,'Ok---1 are such that (j2, q4, ... ,qk----1 C QM define maneuvers and
V1, 03, ,'1'k are such that q1, (j3, . .. ,(jk C C}r define (compatible) trim trajec-
tories. (Alternatively, and without affecting the results in this paper, rnotion
plans can be defined as in .)We denote by V(P, Q) the set of motion plans
for P with syrnmetry group 9 generated frorn (YfP, 9), /v1.(P, Q)l. Figure 1.
depicts a sample trim-maneuver-trim piece of a motion plan 'Ii C V(P, Q).

2.3 Hybrid systerns

"rhe hybrid cont.rol framework proposed in this paper for maneuver-based
motion planning follmvs the general model for hybrid systems in outlined
in (see also 1. . Hybrid systems are dynamical systems with continuous
and discrete dynamics. In l8], a hybrid system 'H is given by a flow map, a
flow a jump map, and a jump set. For the purposes of this paper, the
state of the hybrid system, denoted by (, takes values in , the flow map
is given by a function f : -----+ Il{n and the flow set, denoted by C
define the flow equation i f(x), x C C; while the jump map is given by a
function 9 : m~n -----+ lFr~ and the jump set, denoted by D c m~n, define the jump
equation:c' = g(:c), x C D. Continuous evolution of the solutions (or flows)



I
t!

Figure 1: Sequence of entries of a motion plan v: Vj-1 = (%-1, Tqj_J defining
trim trajectory Xqj_l' Vj = (%,g~j,g~j) defining maneuver Xqj ' and Vj+! =

(Qj+1, Tqj+J defining trim trajectory Xqj+l.

to H is permitted only when the solution is in C and discrete evolution (or
jumps) is allowed only when the solution is in D. Hence, a hybrid system H
has data (I, C, g, D) and can be written as

H: x E lftn
{

X = f(x),
x+ = g(x),

xEC
xED.

To define solutions to H, the number of jumps is treated as an independent
variable j and the state is parametrized by (t,j). A solution is a function
defined on subsets of lft::--o x N. A subset E c lft::--o x N is a compact hybrid
time domain if

J-1

E = U([t j , t j +!], j)
j=O

for some finite sequence of times °= to <:: t 1 <:: tJ. It is a hybrid time
domain if for all (T, J) E E, E n ([0, T] x {O, 1, J}) is a compact hybrid
domain. On each hybrid time domain there is a natural ordering of points:
(t, j) ::< (tl,j') if t <:: t' and j <:: jl A hybrid arc is a function x : dom x ---+ lftn
on a hybrid time domain domx such that x(t,j) is absolutely continuous in
t for a fixed j and (t,j) E domx. It is a solution to the hybrid system H if
x(O, 0) E CuD and

(Sl) For all j E N and almost all t such that (t,j) E domx,

x(t,j) E C, x(t,j) = f(x(t,j))

(S2) For all (t,j) E domx such that (t,j + 1) E domx,

x(t,j) ED, x(t,j + 1) = g(x(t,j)).
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A concept of closeness of solutions to hybrid systems is as follows. Two
solutions x : dam x ----t ,/} : dam/} ----t are (T, 1, E)-close if:

(a) for all (t, J) E dam x with t < T, j :; J there exists s such that
(s,j) Edomy, t-sl<E,and

(b) for all (t, J) Edam y with t < T, J :; J there exists s such that
(s,j) E dom1", It - 51 < E, and

Iy(t,j) - x(5,J)1 < E.

Note that this concept not require
jumps at the same hybrid instant (l, ]). See and

utions to at
for rnore details.

3 A hybrid controller for Illation planning

Given a motion plan v E V(P, m, our goal is to design a controller generating
a trajectory of P that satisfies the motion plan specifications given in terms of
a finite sequence of trim trajectories and maneuvers froIn (T(P, Q), ,/\1(P, Q)).
We propose a hybrid controller, denoted by He, with:

• logic stat.e q E (J to indicate the system mode: trim nwde when q E Ch"
maneuver nwde when q E (JA1.

• logic state peN to select an entry of a given motion plan v c V(P, Q),

• displacement state ::; E g to store the overall displacement of the tra­
ject.ory of P,

• timer state T C ]f(. to keep track of the time in maneuver mode and to
parametrize the reference trajectory during trim mode.

The output of the controller, that is, the input of P, is

where Ftc:

U /'''e(1'', q, T)

. The input to He is the state x of P.

(:3'1
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3.1 Control strategy

Civen a rnotion plan 'U C vep, Q), let q = % Ch, ,7 <Ie' rrhe controHcr
He performs the following tasks:

Task 1) Trim TraJectonj Tracking: Track trim trajectory w
xq is defined by (~q~ x~) E T(P, Q) via (2),

Task 2) Maneuver Execution Start: \Vhen the state x is such that the
maneuver 1 ~ vvhich succeeds the trim trajectory ,can be executed and
the timer elapsed for at least Tq units of time, update q to %+1) reset timer
T to zero, and execute the (j + l)-th maneuver.

Task 3) ManeuvCT Execution End: \:Vhen the state x is such that the
trim trajectory 2 can be executed and the timer T has elapsed for at least
Tq units of time, update q to %+2 and perform Task 1) if J + 2 < k,

Execution of trim trajectories in rrask 1. is performed in closed-loop with
a local tracking controHer that guarantees x(t) ------, :1:q (t) asymptotically. Ma­
neuvers are started when: 1) the tirner has elapsed for at least the duration
planned for the predecessor trim trajectory, and 2) the state reaches a set
from where the maneuver can be executed (the latter corresponds to l'ask 2).
"fhe trim trajectory that follows every maneuver is started as soon as the
state :1: is in the set where tracking is possible and the tirner has elapsed the
specified amount of time for the maneuver.

3.2 Control design

The following assumption guarantees that Task 1. can be accomplished.

Assumption ::Ll (tracking of tTirn trajectories) FOT each q E Qr, there ex­
ists a continuous function I'Cq : x ------t i a continuously differentiable
function V~ : I class-K'oo functions O:~i Ct~ I and an open neighbor­
hood of the origin Bq C [ftrl sl.tch that

where f : is given by

Ve C

Ve C Bq , (4 )

and defines the tilne-invariant system e j(e) invariant under the action of
1Jr, where x q is the trim trajectory generated by flq.
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Remark 3.2 In addition to the invariance propertYI Assumption 3.1 guar­
antees the existence of a local controller, with basin of attraction Bq, which ac­
complishes asymptotic tracking of trim trajectories. Additionally, each track­
ing control law K q is such that, when applied to P, result in a time-invariant
error system with e := x-xq having the symmetry property. This assumption
holds for nonlinear systems that can be put in feedback linearizable normal
form [3, 10j with error system that is invariant under the action of W [lS}.

•
The construction of the flow and jumps sets of He follows. By the conti­

nuity properties of maneuvers in Definition 2.4, for each maneuver x q with in­
put j3q and maneuver duration Tq, q E QM, there exist disjoint and open sets
Sq, Lq C jRn such that for each xq(O) E Sq, xq(Tq) E Lq, xq(t) = f(xq, j3q(t)).
For each q E QM, pick compact sets Dq such that Dq C Sq and x~ E D~, and

define Cq := jRn \ Dq. The set Dq, q E QM, corresponds to the maneuver's
start set in Task 2.

We now compute the set of points from where tracking of trim trajectories
is possible. By construction, there exist s* > 0 such that

s* := argmax {x~ + slffi C Sq, Vq E QM} .
,,>0

Using Assumption 3.1, for each q E QT, define

D q := {e E jRn I Y;(e) ~ cq } ,

where cq > 0 is such that

and (an-1 is the inverse of the function ai. Define Cq := jRn \ D q . This
construction yields a constant Jq such that when the trim trajectory xq(t) is
tracked from initial conditions in D q , the state x belongs to a subset of the
start set of each of the maneuvers in M (P, Q) after Tq units of time have
elapsed (Tq is the execution time of the trim trajectory given in the motion
plan) .

The following assumption guarantees that maneuvers take trajectories to
points where trim trajectories can be executed.
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Assumption 3.3 (nested condition) For every motion plan v E V(P, Q),
every maneuver with associated entry Vi in v and input (3q" its associated set
Lqi is such that

Lqi C Dqi+l ,

where Dqi+l is the set associated with tracking of the trim trajectory Xqi+l'

qi+l E QT.

Remark 3.4 The condition in Assumption 3.3 assures that, after a maneu­
ver, the state x is in a set from which tracking of the trim trajectory succeeding
it is possible. This condition holds by picking small enough landing set Lq

when Assumption 3.1 is in place. However, in order to get practical robust­
ness results, the landing sets are usually fixed. In such cases, the tracking
law in Assumption 3.1 should be chosen to have large enough set Dq , q E QT .

•
Figure 2 illustrates the sets designed above.

q-th maneuver...

(a) Trim sets. (b) Maneuver sets.

Figure 2: Sets of the hybrid controller for a trim trajectory and maneuver in
the motion primitive in Figure 1.

3.3 Hybrid controller

The control logic outlined above is implemented in the hybrid controller He
as follows.
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3.:3.1 Jumps

Jumps occur while in trim mode with p < k; ( ) it is not the trim
trajectory of the rnotion plan) when the state ;J; the set of pointsw
the rnaneuver 1 can started and the timer T has elapsed for T~p units of
time. The set in the first condition is given by Dqc+ 1 ) qp+l E C2r"1) after the left
action W with displacement given by::; multiplied by the nominaHy expected
trim trajectory displacement exp(~qTq) and the matching displacement
Then, jumps occur when

q C (JeI' and :r c qj exp(~qT

with update law

,Dqp_:_ 1) and T :?: T~ , (fJ )

q p+ L z+ ( " +zexpJ::''1T), T 0, (6)

that is) q is mapped to the next mode in the rnotion plan v, the rnotioIl
plan index p is incrernented by one, z is updated with the current total
displacernent of the motion primitive, and T is reset to zero,

v\ihiIe in maneuver mode, jumps occur when the state reaches the set of
points where the trim trajectory can be started and the timer state T

has elapsed for at least Tq units of time. As in the case for jumps during
trim mode, the set in the former condition is given by Dq ) q C Cdr",!; after
the invariant operation W with displacement given by:; multiplied by the
planned maneuver trajectory displacement) which is given by 9'1) and the
matching displacement 9~. Then, jumps in maneuver mode occur when

with update law

q = Qp+l, 17' = P 1, Y = Z9'1) T+ = 0 .

3.:1.2 Flows

During flows, the controiler variables have dynamics given by

(1 = CJ, Tj = CJ,:: = 0, T = 1 ,

when

1"'\
\ I J

(8)

(9)

or

fJ9

(11)



3.:3.3 Output

'"['he controller output is the input to P and is given by u = K;c(:l, q, T) W

if q E QM
if q E QT .

(12)

'"['he function f'q is the control input that the q-th maneuver, q

QJ\1. '"['he function /(q is the tracking control law in Assumption 3.1 for
the q-th trim trajectory, q Ch·, which is designed using trim trajectory
inforrnat ion.

3.~L4 Closed-loop system

\Ve denote the closed-loop system resulting from controlling P with H c by
He! and its state by 'P: x,q,p,zJ) EX: x Q x x x
where the Euclidean space embeds Q. The continuous dynamics are given
by closed-loop plant dynamics i; f(x, f,c(X, q, T)) along with (9), with flow
set given by the union of the sets defined by (10) and (11). The discrete
dynamics are given by the update laws in (6) and (8). The resulting closed­
1"(" ..) c:v·'t'rn 7"'{ (·"tII b:> writt:>nin tll" ('('mn'}r't frTm in U) 'J) u"in c)" II' ')P th:>c... ~).t 1.- ...,;:' ~t"". cl ~_-(,'" (;:.' ,.--(;:.' ,. . v ,~~). !;,,{"' -,~ ~ .,) ,,,. . ~",-;...,J .0_) f.~ --.,. . b 'Y C f.~ ~ (;:.'

state and appropriately defining functions f,?J and sets C and D.

4 J\1otion plan execution:
nOlninal and perturbed case

Given a motion plan 'U and an initial configuration (:r;~~, g~:) c··· x Q such
that = \]j (9;;' ), let T : dom T describe the desired trajectory of
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the nominal motion plan v, that is:

W(g2, (t))

((t, J) ..... (t) )

'f t p' f') -T 11 . ell, IJ 1

and j °
if t E rT11 T2L

and j 1
if t E rT2,7;iL

- . -

and j 2

where is the trirn trajectory with ({ql' :J;~l) C T (P, Q), is the maneuver
with U'q2' , 9q::, if C /vl (P, Q), etc. Note that each jump of ( corresponds
to a change of motion primitive. For exarnpIe, for each (1.,.1) C 10,71] x {O},
((I. <J) is given by the (11-th trim trajectory, and after the j urnp at {; = 71, j =
0, and for all (t;,j) c 1,'121 x {I}, (({,.;) is given by the q2-th maneuver.

rrhe duration of the motion plan v is T~- = I::i=13,.k 'Ii --i-. I::i=2.4,.!"-lT~i'

vVhen T-r is finite 1 dam r is a subset of [0, T-rl x {O, 1, 2, ... , k -I}, while vvhen
T, is infinite, domr is a subset of 10,(0) x {0,1,2, ... , k -I}.

Theorem 4.1 (nOininal execution) Let AS8urnptions :I1 and :I3 hold. For
each '0 V(P, Q) v;ith nominal motion plan tmjectory r and each )g;)) c

x Q such that x;: = III (g;.', ). (~ql' :z:~,) C T (P, Q). e:x:ists a unique

8olntion cp to 'l-ld fnJ1ncp(O, 0) = )Ql, 1, g;;, 0) that i8 bounded and is such
that the :z: component satisfies :.r(t, j) = r(t, J) j()r all )) edam (p.

Remark 4.2 Theorem,4.1! which follows by construction! states that every
motion plan v c V(P, Q) is properly executed by 'l-lcl- This result recovers the
nominal TnotioT! plan e:x:ec'I1tion property of the hybrid a'l1toTnaton in •

In addition to the nominal property in Theorem II 1, the proposed hybrid
control construction guarantees that, under the presence of perturbations,
rnotion plan execution close to a norninal one. Note that the presence of
perturbations in fLc! on the initial conditions, parameters, and/or the state
affects the jurnp times. In this way, the dornain of the resulting trajectory
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does not need to coincide with the domain of the nominal trajectory r as­
sociated to v E V(P,9). The (T, J, c)-closeness notion of distance between
hybrid arcs in Section 2.3 handles such a situation.

Theorem 4.3 (perturbation of initial conditions) Let Assumptions 3.1 and
3.3 hold. For each v E V(P, 9) with nominal motion plan trajectory rand
each (x~, g~) E lI{n x Q such that x~ = \If (g~, x~J, (~qj) x~J E T (P, Q), each
c > 0, each compact set K C Hq1 ! and each (T, J) E lI{;::o X N! (T, J) :j

(Tr ,k-1), there exists 6 > 0 such that every solution CPs toHcl with CPs(O, 0) =

(x~, qt, 1, g~, 0), x~ E K + 6lffi, is bounded and the x component and rare
(T, J, c)-close.

Remark 4.4 The time horizon (T, J) where the closeness property in Theo­
rem 4.3 holds can be picked to be equal to (Tr , k - 1) when Tr is finite. Then!
closeness between the component x of the solution and r is guaranteed in the
entire duration of the motion plan. The hybrid time domain of each solution
to Hel can be extended to an unbounded one without affecting the behavior of
the system up to time (T, J). In addition to the regularity properties of the
closed-loop system (guaranteed by the standing assumption and the hybrid
controller construction)! the proof of Theorem 4.3 extends the hybrid time
domain to an unbounded one to enable the application of results in [gj for
hybrid systems with perturbations. •

Under the presence of perturbations, system P controlled by H can be
written as

(13)

where dt corresponds to error in the measurements of x and d2 models other
exogenous disturbances and unmodeled dynamics. The addition of these
perturbations in th_e closed-loop system Hcl results in a perturbed hybrid
system, denote as Hel' which can be written as

r.p = !(cp+dt (t))+d2(t)
cP+ = g(cp)

The following result asserts that the motion planning is robust to a class
of perturbations. 2

2The exogenous signals d1 and d2 are given on hybrid time domains (given a hybrid
time domain S and an exogenous signal d1 (t), we can define, with some abuse of notation,
d1 (t, j) := d1 (t) for each (t, j) E S.) Solutions to hybrid systems with the perturbations
above is understood similarly to the notion of solution outlined in Section 2.3.
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Theorem 4.5 (perturbations) Let Assumptions 3.1 and 3.3 hold. For each
v E V(P, Q) with nominal motion plan trajectory r and each (x2, 92) E lftn x 9
such that x2 = (jJ(9~,X~J, (~q"x~J E T(P,Q), each c > 0, each compact set
K c Bq" and each (T, J) E lft:>o x N, (T, J) ::< (Tr , k - 1), there exists 0 > 0

such that every solution ciJ to Hcl with ciJ( 0, 0) = (XO, ql, 1,92, 0), XO E K +oB,
Id1 (t,j)1 <:: 0 and Id2 (t,j)1 <:: 0 for each (t,j) E dom,!" is bounded and the x
component and the motion plan trajectory rare (T, J,c)-close.

Remark 4.6 The proof of this result uses a technique from [9, Section V}
in which a perturbed hybrid system H~l is embedded into a set-valued hybrid
system. Usin9 the hybrid time domain extension as in Theorem 4.3, the
results follows from [9, Corollary 5.5}. •

o

o
",

o

o
x

o
o 0.5 1

x
1.5

Figure 3: Motion primitive (dashed) in Figure 1 and simple airplane trajec­
tory resulting from applying our hybrid control strategy for motion planning.
Tracking control during trims (red pieces) guarantees that solution and trim
trajectory are stay close. Maneuver starts from a point nearby the maneuver
(blue piece) in the library and remains close to it.

Finally, Figure 3 illustrates a solution to H cl starting nearby the motion
plan in Figure 1. This corresponds to a simulation result from a toolbox for
robust maneuver-based motion planning, currently under development.
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5 Conclusion

\Ve presented a hybrid systems framework for maneuver-based motion plan­
ning algorithrns for nonlinear systems with syrrn:netries. v\ie systernatically
described the construction of a hybrid controller and showed its robustness
properties for a large Class of perturbations. Our results are built upon recent
tools for robustness of stability for hybrid systems. Extensions of the hybrid
control strategy to situations where bounds on the perturbations are known
beforehand follow from the ideas presented in this rnanuscript and will be
Closely explored in the future.
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Discussion on
"Optimality Properties and Driver Input Parameterization for Trail-Braking Cornering"

Emilio Frazzoli
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

1 Overview

The paper by Velenis, Tsiotras, and Lu [6] is a very interesting contribution towards the development of au­
tomatic control systems able to push the performance envelopes of autonomous vehicles and mobile robots,
In fact, while automatic control techniques routinely show superior performance (with respect to humans),
e,g" in terms of set-point regulation, the dexterity and nimbleness demonstrated by human-operated vehicles
and machines is as yet largely unattainable by automated systems,

Advances towards the development of autonomous aircraft capable of performing human-inspired acro­
batic maneuvers have been reported, e,g" in [4,5], The work of Velenis et al. is a first step in the context
of Ackermann-steered (i.e., car-like) ground vehicles, with a special emphasis on techniques applicable to
driving on loose terrain.

Both [4] and [6] follow a similar basic process: (i) data are collected from an instrumented vehicle, while
an expert human pilot executes a maneuver of interest; (ii) these data are used to validate an analytical model
of the vehicle's dynamics, applicable to the operating conditions encountered during the maneuver; (iii) the
data are further interpreted to parameterize and design a control strategy amenable to implementation on a
model-based control strategy; (iv) such control strategy is finally assessed on a high-fidelity simulation.

A significant difference (aside from the application domain) is that Velenis et al. investigate the optimal­
ity of the maneuver, and develop a parameterization of control strategies to reduce the search space of a
nonlinear programming algorithm. This enables them to extend the applicability of the maneuver beyond
the original scenario: for example, they are able to compute trail-braking maneuvers through a variety of
corners, with different total turning angles.

2 Towards a symbolic approach to autonomous high-speed driving

As argued in [6], the development of methods for the design of control laws to perform a certain class of
maneuver is motivated by the prospect of building a library of such maneuvers, and then stringing together
such maneuvers in such a way to construct more complicated trajectories. This is the basis concept behind a
promising new research direction in the literature on robotics and automatic control, which is often referred
to as symbolic control; see, e.g., [2] for a general introduction.

A formal approach to the intuitive concept described above was presented in [3]. The key property of a
dynamical system enabling such an approach is symmetry, i.e., invariance to a certain class of transforma­
tions on the state of the system. This is a very general property of man-made vehicles: for example, the
dynamics of a car-like vehicle, operating on fiat, horizontal terrain, are invariant with respect to rigid-body
motions on the horizontal plane. The existence of symmetries in a dynamical system allows the definition of
so-called "motion primitives," i.e., equivalence classes of trajectories modulo the symmetry transformations.

In [3], in order to develop a systematic approach to the selection of motion primitives to include in a
library, two kinds of motion primitives were identified: trim trajectories and maneuvers. The former, also
called relative equilibria or steady-state trajectories, correspond to orbits of the infinitesimal action of the
symmetry transformation: for example, in the case of a car-like vehicle, such trim trajectories correspond
to circles described at constant speed, steering angle, and throttle settings (this includes degenerate circles,
such as straight lines). Maneuvers are then defined as transitions between such trim trajectories. The ap­
proach in [6] can in fact be seen as a way to compute optimal maneuvers: in particular, the trail-braking
maneuver described in the paper can be thought of as a transition between a trim trajectory in which the car
is moving straight at constant (high) speed, back to the same trim trajectory, with a different initial point,
and a different heading.



The objective of the remainder of this note is complementary to [6]: instead of computing maneuvers, we
will analyze trim trajectories for the same dynamic model. The purpose of this investigation is not only to
provide well-defined "starting" and "ending" states for trail-braking (or other) maneuvers, but also to inves­
tigate possible ways to further decompose such maneuvers. For example, one could imagine decomposing a
trail-braking maneuver into (i) an entry phase, in which the car brakes hard and then steers to enter a circular
trajectory at a high sideslip angle; (ii) a steady-state phase, in which the car makes progress around the
corner, on a tight circle; and (iii) an exit phase, in which the car countersteers while accelerating out of the
turn. Varying the length of the "trim" phase, the car would be able to execute a whole class of trail-braking
turns, through a range of angles-without the need to compute explicitly several different trajectories.

3 Trim trajectories for the half-car model

Recall that since the dynamics of the car are invariant to rigid body motions in the plane, trim trajectories
are (arcs) of circles, followed at constant speed. It is convenient to rewrite the half-car dynamics equations
in [6] in a reference frame whose origin is moving on a circle of radius r at constant speed V, rotating at
angular velocity m = Vir, and with (centripetal) acceleration a = m2r. The x axis of this frame is aligned
with the velocity vector. Using the same notation as in [6], we get

m (1 - 2my - m2x)
m (Y +2mx - m2y + m2r)

[,if!

fpxcos( vr + 8) - fpy sine vr + 8) + !Rx cos vr - .tRy sin vr,

fpxsin(vr+8)+ fpy cos(vr + 8) + fRxsinvr+ .tRycosvr,

(jFx sin 8 + fpy cos 8)eF - .tRyeR.

(1)

For the motion of the vehicle to remain planar, the following balance equations, and constraint force in­
equalities, must be satisfied:

o
o
o

fp, + .tR, - mg,

h(jFx cos 8 - fpy sin 8 + fRx) + fp,eF- .tR,eR,

Mx + h(fpx sin 8 + fpy cos 8 + .tRy),

(2)

w
fp,::>O, .tR,::>O, IMxl-<::mg2. (3)

(Note that the first two constraints (3) are usually satisfied for full-size vehicles. The third one-in which w
is the width of the wheelbase, and Mx is the reaction moment along the vehicle's longitudinal axis-could
be violated for large lateral accelerations occurring in vehicles with wl2h > 1 (e.g., trucks or SUV's) and
indicates the onset of roll-over phenomena.)

The friction forces fpx, fpy, fRx, and.tRy can be found multiplying the constraint forces fp, and .tR, by an
appropriate friction coefficient, which in turns depends on the amount of slippage between the tire and the
terrain. A popular model is Pacejka's "Magic Formula" [1], which can be written in its basic form as

Ii(S) = D sinCe arctan (Bs) ), (4)

where B, e, and D are appropriate constants, and s measures the slip ratio.
For the purpose of this note, as in [6], the slip ratio is defined as the ratio between the relative speed of the

wheel and of the terrain at the contact point, and the speed of the contact point on the wheel in the absence
of drivinglbraking torques. With this definition in mind, we obtain

s = Js; + (tana)2,

where a is the wheel slip angle, formed by the longitudinal axis of the wheel with the velocity vector at the
contact point, and Sx is the longitudinal slip, defined as

Sx = lD...vheelrwheel - 1.
Vcosa
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Lateral and longitudinal friction coefficients are recovered as

liy(a,s)

~ Ii(s),

tana ()--Ii s,
s

and finally we obtain the lateral and longitudinal friction force components as Ix = IixI" Iy = liyI,
For simplicity, we will consider the front and rear longitudinal slip ratios SFx and SRx as independent

control inputs (in place of, e.g., torques on the wheel).

3.1 Computing steady-state trajectories

Steady-state trajectories correspond to equilibrium points in the rotating frame, and can be found solving
the system of equations obtained from (1), (2), and (3), setting x, y, vr, and their derivatives to zero.

Some algebra leads to
2 £F

JRy = mm r cos vr,,--------,,-- ,
CF+CR

fi
- g£F + hm2rsin vr

R,-m (£F+£R) ,

and
g£R - hm2rsm vr

fp,=m (£F+£R)

Combining (5) and (6), we get that the rear-wheel lateral friction coefficient IiRy is

JRy m2
r£F cos vr

IiRy = JR, = g£R + hm2rsin vr'

Since by definition

(5)

(6)

(7)

(9)

tanaR
IiRy = --Ii(SR), (8)

SR

equations (7) and (8) can be solved for SR as a function of the vehicle's linear and angular velocity V and m,
and of the sideslip angle vr. In particular, if we consider the case of a front-wheel drive (FWD) vehicle, and
assume that it is not braking, then SRx = 0 and hence SR = tan/XR. In this case, (7) and (8) simplify to

m2
r£F cos vr

---c--~c-'- = li(tanaR).
g£R + hm2rsin vr

The total front-wheel slip ratio can be computed by solving

VI~x+ I~y vm2m4r2 +I~y - 2mmrJRycos vr
Ii (SF ) = = -'----------'~----

fp, fp,
(10)

(11)

for SF. The steering angle 0 necessary to achieve the above slip ratio can be found as a solution of the
following equation:

tan(o -~) mm2rcos(vr+o) + JRycoso

SF VI~x+f~y

where ~ is the steering angle for which the wheel slip angle is zero. Finally, the front-wheel longitudinal
slip ratio can be recovered as
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'k(0) =

The procedure outlined above can be used to compute the sideslip angle vr, steering angle 0, and longi­
tudinal slip on the driving wheel SFx given a desired trim condition (V, OJ), This calculation requires solving
three nonlinear equations, namely, (9), (10), and (11), These three scalar equations can be solved in se­
quence, using efficient numerical procedures, However, for a given pair (V, OJ), there may be no solution, or
more than one solutions.

In Figure 1, the region in the (V, a) plane for which at least one solution exists, with Ivrl <::: 90', and
101 <::: 30', and ISFxl < 1 (of these constraints, only the one on 0 was binding in some cases), This figure
reveals an interesting structure in the set of achievable trim conditions for a FWD vehicle,

The bulk of trim conditions can be found in the region (approximately) bounded on the left by the parabola
a = rk(30')v2, where

{;\ + (eF+eR)2
R tanS

is the kinematic turn radius, computed assuming that no wheel slipping occurs, In the case at hand, rk(30') =

4.94 ill. This region indicates conditions where wheel slipping is moderate, and does not playa major role
in determining the behavior of the car-except possibly for the understeer noticeable at high speeds.
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Figure 1: Region of attainable trim conditions for the Front-Wheel Drive vehicle considered in the text.
The contour plot shows the sideslip angle vr (in degrees) required to maintain a trim condition indicated by
linear velocity, and centripetal acceleration (such angle is not necessarily unique at all points in the region).
The circular markers indicate the kinematic limit on the turning radius.

On the other hand, to the left of the parabola mentioned above, there exist trim conditions in which the
vehicle's center of mass travels on a circle with radius smaller than the minimum kinematic turning radius.
The sideslip angle is very large, of the order of 25 degrees in our case, and so is the steering angle. This
set of trim trajectories corresponds to what are colloquially referred to as "doughnuts," and the ability of the
vehicle to achieve these trajectories can only be modeled taking into account the effects of wheel slipping
on the friction forces.
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4 Conclusions

In this note, we aimed at complementing the paper under discussion by computing the set of attainable trim
trajectories for the half-car model. It is shown that this set is far from trivial, and contains some trajectories
corresponding to large sideslip angles, and significant slipping/skidding conditions. These trajectories ex­
ceed kinematic limits on the minimum radius of curvature, and on the maximum angular velocity (and hence
steering effectiveness) achievable by the car. It is believed that such trajectories can be used, in concert with
the techniques developed by Velenis, Tsiotras, and Lu, as further building blocks to construct systematically
new classes of "maneuvers," enabling autonomous cars to design and execute on-line turns at the limit of
their performance.

While the real-world implementation of such algorithms on a full-size car is still difficult-especially
because of the difficulties in making available to an on-board computer all the sensory cues used by drivers,
ranging from visual and auditory data to tactile feedback from the steering wheel-the paper under discus­
sion and this note provide further steps towards a good understanding of the fundamental geometric and
dynamic properties of the dynamics of car-like vehicle on loose terrain.
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